
STDLIB

version 1.10

Typeset in LATEX from SGML source using the DOCBUILDER 3.2.2 Document System.

Contents

1 STDLIB Reference Manual 1

1.1 beam lib . 43

1.2 c . 47

1.3 calendar . 52

1.4 dets . 57

1.5 dict . 71

1.6 digraph . 75

1.7 digraph utils . 82

1.8 epp . 86

1.9 erl eval . 88

1.10 erl id trans . 91

1.11 erl internal . 92

1.12 erl lint . 94

1.13 erl parse . 96

1.14 erl pp . 99

1.15 erl scan . 102

1.16 ets . 104

1.17 file sorter . 118

1.18 filename . 123

1.19 gb sets . 128

1.20 gb trees . 131

1.21 gen event . 134

1.22 gen fsm . 143

1.23 gen server . 152

1.24 io . 160

1.25 io lib . 167

1.26 lib . 170

1.27 lists . 171

1.28 log mf h . 182

1.29 math . 183

iiiSTDLIB

1.30 orddict . 185

1.31 ordsets . 186

1.32 pg . 187

1.33 pool . 188

1.34 proc lib . 190

1.35 queue . 194

1.36 random . 195

1.37 regexp . 197

1.38 sets . 202

1.39 shell . 205

1.40 shell default . 212

1.41 slave . 213

1.42 sofs . 216

1.43 string . 238

1.44 supervisor . 243

1.45 supervisor bridge . 250

1.46 sys . 253

1.47 timer . 260

1.48 unix . 264

1.49 win32reg . 265

iv STDLIB

STDLIB Reference Manual

Short Summaries

� Erlang Module beam lib [page 43] – An interface to the BEAM file format

� Erlang Module c [page 47] – Command Interface Module

� Erlang Module calendar [page 52] – Local and universal time, day-of-the-week,
date and time conversions

� Erlang Module dets [page 57] – A Disk Based Term Storage

� Erlang Module dict [page 71] – Key-Value Dictionary

� Erlang Module digraph [page 75] – Directed Graphs

� Erlang Module digraph utils [page 82] – Algorithms for Directed Graphs

� Erlang Module epp [page 86] – An Erlang Code Preprocessor

� Erlang Module erl eval [page 88] – The Erlang Meta Interpreter

� Erlang Module erl id trans [page 91] – An Identity Parse Transform

� Erlang Module erl internal [page 92] – Internal Erlang Definitions

� Erlang Module erl lint [page 94] – The Erlang Code Linter

� Erlang Module erl parse [page 96] – The Erlang Parser

� Erlang Module erl pp [page 99] – The Erlang Pretty Printer

� Erlang Module erl scan [page 102] – The Erlang Token Scanner

� Erlang Module ets [page 104] – Built-In Term Storage

� Erlang Module file sorter [page 118] – File Sorter

� Erlang Module filename [page 123] – File Name Manipulation Functions

� Erlang Module gb sets [page 128] – General Balanced Trees

� Erlang Module gb trees [page 131] – General Balanced Trees

� Erlang Module gen event [page 134] – Generic Event Handling Behaviour

� Erlang Module gen fsm [page 143] – Generic Finite State Machine Behaviour

� Erlang Module gen server [page 152] – Generic Server Behaviour

� Erlang Module io [page 160] – Standard I/O Server Interface Functions

� Erlang Module io lib [page 167] – IO Library Functions

� Erlang Module lib [page 170] – Interface Module

� Erlang Module lists [page 171] – List Processing Functions

� Erlang Module log mf h [page 182] – An Event Handler which Logs Events to
Disk

1STDLIB

STDLIB Reference Manual

� Erlang Module math [page 183] – Mathematical Functions

� Erlang Module orddict [page 185] – Key-Value Dictionary as Ordered List

� Erlang Module ordsets [page 186] – Functions for Manipulating Sets as Ordered
Lists

� Erlang Module pg [page 187] – Distributed, Named Process Groups

� Erlang Module pool [page 188] – Load Distribution Facility

� Erlang Module proc lib [page 190] – Plug-in Replacements for spawn/3,4 and
spawn link/3,4.

� Erlang Module queue [page 194] – Abstract Data Type for FIFO Queues

� Erlang Module random [page 195] – Pseudo random number generation

� Erlang Module regexp [page 197] – Regular Expression Functions for Strings

� Erlang Module sets [page 202] – Functions for Set Manipulation

� Erlang Module shell [page 205] – The Erlang Shell

� Erlang Module shell default [page 212] – Customizing the Erlang Environment

� Erlang Module slave [page 213] – Functions to Starting and Controlling Slave
Nodes

� Erlang Module sofs [page 216] – Functions for Manipulating Sets of Sets

� Erlang Module string [page 238] – String Processing Functions

� Erlang Module supervisor [page 243] – Generic Supervisor Behaviour.

� Erlang Module supervisor bridge [page 250] – Generic Supervisor Bridge
Behaviour.

� Erlang Module sys [page 253] – A Functional Interface to System Messages

� Erlang Module timer [page 260] – Timer Functions

� Erlang Module unix [page 264] – Calls to the UNIX Shell

� Erlang Module win32reg [page 265] – win32reg provides access to the registry on
Windows

beam lib

The following functions are exported:

� chunks(FileNameOrBinary, [ChunkRef]) -> fok, fModule, [ChunkData]gg
| ferror, Module, Reasong
[page 44] Read selected chunks from a BEAM file or binary

� version(FileNameOrBinary) -> fok, fModule, Versiongg | ferror,
Module, Reasong
[page 44] Read the BEAM file’s module version

� info(FileNameOrBinary) -> [SourceRef, fmodule, Moduleg, fchunks,
[ChunkInfo]g] | ferror, Module, Reasong
[page 44] Return some information about a BEAM file

� cmp(FileNameOrBinary, FileNameOrBinary) -> ok | ferror, Module,
Reasong
[page 44] Compare two BEAM files

� cmp dirs(Directory1, Directory2) -> fOnly1, Only2, Differentg |
ferror, Module, Reasong
[page 45] Compare the BEAM files in two directories

2 STDLIB

STDLIB Reference Manual

� diff dirs(Directory1, Directory2) -> ok | ferror, Module, Reasong
[page 45] Compares the BEAM files in two directories

� strip(FileNameOrBinary) -> fok, fModule, FileNameOrBinarygg |
ferror, Module, Reasong
[page 45] Removes chunks not needed by the loader from a BEAM file

� strip files(Files) -> fok, [fModule, FileNameOrBinary]gg | ferror,
Module, Reasong
[page 45] Removes chunks not needed by the loader from BEAM files

� strip release(Directory) -> fok, [fModule, FileName]gg | ferror,
Module, Reasong
[page 46] Removes chunks not needed by the loader from all BEAM files of a
release

� format error(Error) -> character list()
[page 46] Return an English description of a BEAM read error reply

c

The following functions are exported:

� bt(Pid) -> void()
[page 47] Evaluate erlang:process display(Pid, backtrace)

� c(File) -> CompileResult
[page 47] Compile a file

� c(File, Flags) -> CompileResult
[page 47] Compile a file

� cd(Dir) -> void()
[page 47] Change directory

� flush() -> void()
[page 48] Flush the shell message queue

� help() -> void()
[page 48] Display help information

� i() -> void()
[page 48] Display system information

� i(X, Y, Z) -> void()
[page 48] Evaluate process info(pid(X, Y, Z))

� l(Module) -> void()
[page 48] Load code into the system

� lc(ListOfFiles) -> Result
[page 48] Compile several files

� ls() -> void()
[page 48] List files

� ls(Dir) -> void()
[page 48] List files in Dir

� m() -> void()
[page 48] List all loaded modules

� m(Module) -> void()
[page 49] Display information about a module

3STDLIB

STDLIB Reference Manual

� memory() -> TupleList
[page 49] Return memory allocation information

� memory(MemoryType) -> int()
[page 49] Return memory allocation information

� nc(File) -> void()
[page 50] Compile file and loads it on multiple nodes

� nc(File, Flags) -> void()
[page 50] Compile file and loads it on multiples nodes

� ni() -> void()
[page 50] Display network information

� nl(Module) -> void()
[page 50] Load module in a network

� nregs() -> void()
[page 50] Display registered processes on all nodes

� pid(X, Y, Z) -> pid()
[page 50] Make a Pid

� pwd() -> void()
[page 51] Print current working directory

� q() -> void()
[page 51] Stop the Erlang node

� regs() -> void()
[page 51] Display registered processes

� xm(ModSpec) -> void()
[page 51] Cross reference check a module

� zi() -> void()
[page 51] Display system information including zombies

calendar

The following functions are exported:

� date to gregorian days(Year, Month, Day) -> Days
[page 52] Compute the number of days from year 0 up to the given date.

� date to gregorian days(Date) -> Days
[page 52] Compute the number of days from year 0 up to the given date.

� datetime to gregorian seconds(DateTime) -> Days
[page 52] Compute the number of seconds from year 0 up to the given date and
time.

� day of the week(Date) -> DayNumber
[page 53] Compute the day of the week

� day of the week(Year, Month, Day) -> DayNumber
[page 53] Compute the day of the week

� gregorian days to date(Days) -> Date
[page 53] Compute the date given the number of gregorian days.

� gregorian seconds to datetime(Secs) -> DateTime
[page 53] Compute the date given the number of gregorian days.

4 STDLIB

STDLIB Reference Manual

� is leap year(Year) -> bool()
[page 53] Check if a year is a leap year.

� last day of the month(Year, Month) -> int()
[page 53] Compute the number of days in a month

� local time() -> fDate, Timeg
[page 54] Compute local time

� local time to universal time(fDate, Timeg) -> fDate, Timeg
[page 54] Convert from local time to universal time.

� now to local time(Now) -> fDate, Timeg
[page 54] Convert now to local date and time

� now to universal time(Now) -> fDate, Timeg
[page 54] Convert now to date and time

� now to datetime(Now) -> fDate, Timeg
[page 54] Convert now to date and time

� seconds to daystime(Secs) -> fDays, Timeg
[page 54] Compute a days and time from seconds.

� seconds to time(Secs) -> Time
[page 55] Compute time from seconds.

� time difference(T1, T2) -> Tdiff
[page 55] Compute the difference between two times

� time to secnds(Time) -> Secs
[page 55] Compute the number of seconds since midnight up to the given time.

� universal time() -> fDate, Timeg
[page 55] Compute universal time

� universal time to local time(fDate, Timeg) -> fDate, Timeg
[page 55] Convert from universal time to local time.

� valid date(Date) -> bool()
[page 56] Check if a date is valid

� valid date(Year, Month, Day) -> bool()
[page 56] Check if a date is valid

dets

The following functions are exported:

� all() -> [Name]
[page 58] Return a list of the names of all open Dets tables on this node.

� bchunk(Name, Continuation) -> fContinuation2, Datag |
’$end of table’ | ferror, Reasong
[page 58] Return a chunk of objects stored in a Dets table.

� close(Name) -> ok | ferror, Reasong
[page 59] Close a Dets table.

� delete(Name, Key) -> ok | ferror, Reasong
[page 59] Delete all objects with a given key from a Dets table.

� delete all objects(Name) -> ok | ferror, Reasong
[page 59] Delete all objects from a Dets table.

5STDLIB

STDLIB Reference Manual

� delete object(Name, Object) -> ok | ferror, Reasong
[page 59] Delete a given object from a Dets table.

� first(Name) -> Key | ’$end of table’
[page 59] Return the first key stored in a Dets table.

� foldl(Function, Acc0, Name) -> Acc1 | ferror, Reasong
[page 60] Fold a function over a Dets table.

� foldr(Function, Acc0, Name) -> Acc1 | ferror, Reasong
[page 60] Fold a function over a Dets table.

� from ets(Name, EtsTab) -> ok | ferror, Reasong
[page 60] Replace the objects of a Dets table with the objects of an Ets table.

� info(Name) -> InfoList | undefined
[page 60] Return information about a Dets table.

� info(Name, Item) -> Value | undefined
[page 61] Return the information associated with a given item for a Dets table.

� init table(Name, InitFun [, Options]) -> ok | ferror, Reasong
[page 61] Replace all objects of a Dets table.

� insert(Name, Objects) -> ok | ferror, Reasong
[page 62] Insert one or more objects into a Dets table.

� is dets file(FileName) -> Bool | ferror, Reasong
[page 62] Test for a Dets table.

� lookup(Name, Key) -> [Object] | ferror, Reasong
[page 63] Return all objects with a given key stored in a Dets table.

� match(Continuation) -> f[Match], Continuation2g | ’$end of table’ |
ferror, Reasong
[page 63] Match a chunk of objects stored in a Dets table and return a list of
variable bindings.

� match(Name, Pattern) -> [Match] | ferror, Reasong
[page 63] Match the objects stored in a Dets table and return a list of variable
bindings.

� match(Name, Pattern, N) -> f[Match], Continuationg | ’$end of table’
| ferror, Reasong
[page 63] Match the first chunk of objects stored in a Dets table and return a list of
variable bindings.

� match delete(Name, Pattern) -> N | ferror, Reasong
[page 64] Delete all objects that match a given pattern from a Dets table.

� match object(Continuation) -> f[Object], Continuation2g |
’$end of table’ | ferror, Reasong
[page 64] Match a chunk of objects stored in a Dets table and return a list of
objects.

� match object(Name, Pattern) -> [Object] | ferror, Reasong
[page 64] Match the objects stored in a Dets table and return a list of objects.

� match object(Name, Pattern, N) -> f[Object], Continuationg |
’$end of table’ | ferror, Reasong
[page 65] Match the first chunk of objects stored in a Dets table and return a list of
objects.

� member(Name, Key) -> Bool | ferror, Reasong
[page 65] Test for occurrence of a key in a Dets table.

6 STDLIB

STDLIB Reference Manual

� next(Name, Key1) -> Key2 | ’$end of table’
[page 65] Return the next key in a Dets table.

� open file(Filename) -> fok, Referenceg | ferror, Reasong
[page 66] Open an existing Dets table.

� open file(Name, Args) -> fok, Nameg | ferror, Reasong
[page 66] Open a Dets table.

� pid2name(Pid) -> fok, Nameg | undefined
[page 67] Return the name of the Dets table handled by a pid.

� safe fixtable(Name, Fix)
[page 67] Fix a Dets table for safe traversal.

� select(Continuation) -> fSelection, Continuation2g | ’$end of table’
| ferror, Reasong
[page 68] Apply a match specification to some objects stored in a Dets table.

� select(Name, MatchSpec) -> Selection | ferror, Reasong
[page 68] Apply a match specification to all objects stored in a Dets table.

� select(Name, MatchSpec, N) -> fSelection, Continuationg |
’$end of table’ | ferror, Reasong
[page 68] Apply a match specification to the first chunk of objects stored in a Dets
table.

� select delete(Name, MatchSpec) -> N | ferror, Reasong
[page 69] Delete all objects that match a given pattern from a Dets table.

� slot(Name, I) -> ’$end of table’ | [Object] | ferror, Reasong
[page 69] Return the list of objects associated with a slot of a Dets table.

� sync(Name) -> ok | ferror, Reasong
[page 69] Ensure that all updates made to a Dets table are written to disk.

� to ets(Name, EtsTab) -> EtsTab | ferror, Reasong
[page 69] Insert all objects of a Dets table into an Ets table.

� traverse(Name, Fun) -> Return | ferror, Reasong
[page 69] Apply a function to all or some objects stored in a Dets table.

� update counter(Name, Key, Increment) -> Result
[page 70] Update a counter object stored in a Dets table.

dict

The following functions are exported:

� append(Key, Value, Dict1) -> Dict2
[page 71] Append a value to keys in a dictionary

� append list(Key, ValList, Dict1) -> Dict2
[page 71] Append new values to keys in a dictionary

� erase(Key, Dict1) -> Dict2
[page 71] Erase a key from a dictionary

� fetch(Key, Dict) -> Value
[page 71] Look-up values in a dictionary

� fetch keys(Dict) -> Keys
[page 72] Return all keys in a dictionary

7STDLIB

STDLIB Reference Manual

� filter(Pred, Dict1) -> Dict2
[page 72] Choose elements which satisfy a predicate

� find(Key, Dict) -> Result
[page 72] Searche for a key in a dictionary

� fold(Function, Acc0, Dict) -> Acc1
[page 72] Fold a function over a dictionary

� from list(List) -> Dict
[page 72] Convert a list of pairs to a dictionary

� is key(Key, Dict) -> bool()
[page 72] Test if a key is in a dictionary.

� map(Func, Dict1) -> Dict2
[page 72] Map a function over a dictionary

� merge(Func, Dict1, Dict2) -> Dict3
[page 73] Merge two dictionaries

� new() -> dictionary()
[page 73] Create a dictionary

� store(Key, Value, Dict1) -> Dict2
[page 73] Store a value in a dictionary

� to list(Dict) -> List
[page 73] Convert a dictionary to a list of pairs

� update(Key, Function, Dict) -> Dict
[page 73] Update a value in a dictionary

� update(Key, Function, Initial, Dict) -> Dict
[page 74] Update a value in a dictionary

� update counter(Key, Increment, Dict) -> Dict
[page 74] Increment a value in a dictionary

digraph

The following functions are exported:

� add edge(G, E, V1, V2, Label) -> edge() | ferror, Reasong
[page 75] Add an edge to a digraph.

� add edge(G, V1, V2, Label) -> edge() | ferror, Reasong
[page 75] Add an edge to a digraph.

� add edge(G, V1, V2) -> edge() | ferror, Reasong
[page 75] Add an edge to a digraph.

� add vertex(G, V, Label) -> vertex()
[page 76] Add or modify a vertex of a digraph.

� add vertex(G, V) -> vertex()
[page 76] Add or modify a vertex of a digraph.

� add vertex(G) -> vertex()
[page 76] Add or modify a vertex of a digraph.

� del edge(G, E) -> true
[page 76] Delete an edge from a digraph.

� del edges(G, Edges) -> true
[page 76] Delete edges from a digraph.

8 STDLIB

STDLIB Reference Manual

� del path(G, V1, V2) -> true
[page 76] Delete paths from a digraph.

� del vertex(G, V) -> true
[page 77] Delete a vertex from a digraph.

� del vertices(G, Vertices) -> true
[page 77] Delete vertices from a digraph.

� delete(G) -> true
[page 77] Delete a digraph.

� edge(G, E) -> fE, V1, V2, Labelg | false
[page 77] Return the vertices and the label of an edge of a digraph.

� edges(G) -> Edges
[page 77] Return all edges of a digraph.

� edges(G, V) -> Edges
[page 77] Return the edges emanating from or incident on a vertex of a digraph.

� get cycle(G, V) -> Vertices | false
[page 78] Find one cycle in a digraph.

� get path(G, V1, V2) -> Vertices | false
[page 78] Find one path in a digraph.

� get short cycle(G, V) -> Vertices | false
[page 78] Find one short cycle in a digraph.

� get short path(G, V1, V2) -> Vertices | false
[page 78] Find one short path in a digraph.

� in degree(G, V) -> integer()
[page 79] Return the in-degree of a vertex of a digraph.

� in edges(G, V) -> Edges
[page 79] Return all edges incident on a vertex of a digraph.

� in neighbours(G, V) -> Vertices
[page 79] Return all in-neighbours of a vertex of a digraph.

� info(G) -> InfoList
[page 79] Return information about a digraph.

� new() -> digraph()
[page 80] Return a protected empty digraph, where cycles are allowed.

� new(Type) -> digraph() | ferror, Reasong
[page 80] Create a new empty digraph.

� no edges(G) -> integer() >= 0
[page 80] Return the number of edges of the a digraph.

� no vertices(G) -> integer() >= 0
[page 80] Return the number of vertices of a digraph.

� out degree(G, V) -> integer()
[page 80] Return the out-degree of a vertex of a digraph.

� out edges(G, V) -> Edges
[page 80] Return all edges emanating from a vertex of a digraph.

� out neighbours(G, V) -> Vertices
[page 80] Return all out-neighbours of a vertex of a digraph.

� vertex(G, V) -> fV, Labelg | false
[page 81] Return the label of a vertex of a digraph.

� vertices(G) -> Vertices
[page 81] Return all vertices of a digraph.

9STDLIB

STDLIB Reference Manual

digraph utils

The following functions are exported:

� components(Digraph) -> [Component]
[page 83] Return the components of a digraph.

� condensation(Digraph) -> CondensedDigraph
[page 83] Return a condensed graph of a digraph.

� cyclic strong components(Digraph) -> [StrongComponent]
[page 83] Return the cyclic strong components of a digraph.

� is acyclic(Digraph) -> bool()
[page 83] Check if a digraph is acyclic.

� loop vertices(Digraph) -> Vertices
[page 83] Return the vertices of a digraph included in some loop.

� postorder(Digraph) -> Vertices
[page 84] Return the vertices of a digraph in post-order.

� preorder(Digraph) -> Vertices
[page 84] Return the vertices of a digraph in pre-order.

� reachable(Vertices, Digraph) -> Vertices
[page 84] Return the vertices reachable from some vertices of a digraph.

� reachable neighbours(Vertices, Digraph) -> Vertices
[page 84] Return the neighbours reachable from some vertices of a digraph.

� reaching(Vertices, Digraph) -> Vertices
[page 84] Return the vertices that reach some vertices of a digraph.

� reaching neighbours(Vertices, Digraph) -> Vertices
[page 84] Return the neighbours that reach some vertices of a digraph.

� strong components(Digraph) -> [StrongComponent]
[page 85] Return the strong components of a digraph.

� subgraph(Digraph, Vertices [, Options]) -> Subgraph | ferror,
Reasong
[page 85] Return a subgraph of a digraph.

� topsort(Digraph) -> Vertices | false
[page 85] Return a topological sorting of the vertices of a digraph.

epp

The following functions are exported:

� open(FileName, IncludePath) -> fok,Eppg | ferror, ErrorDescriptorg
[page 86] Open a file for preprocessing

� open(FileName, IncludePath, PredefMacros) -> fok,Eppg | ferror,
ErrorDescriptorg
[page 86] Open a file for preprocessing

� close(Epp) -> ok
[page 86] Close the preprocessing of the file associated with Epp

� parse erl form(Epp) -> fok, AbsFormg | feof, Lineg | ferror,
ErrorInfog
[page 86] Return the next Erlang form from the opened Erlang source file

10 STDLIB

STDLIB Reference Manual

� parse file(FileName,IncludePath,PredefMacro) -> fok,[Form]g |
ferror,OpenErrorg
[page 86] Preprocesse and parse an Erlang source file

erl eval

The following functions are exported:

� exprs(Expressions, Bindings) -> fvalue, Value, NewBindingsg
[page 88] Evaluate expressions

� exprs(Expressions, Bindings, LocalFunctionHandler) -> fvalue,
Value, NewBindingsg
[page 88] Evaluate expressions

� expr(Expression, Bindings) -> f value, Value, NewBindings g
[page 88] Evaluate expression

� expr(Expression, Bindings, LocalFunctionHandler) -> f value, Value,
NewBindings g
[page 88] Evaluate expression

� expr list(ExpressionList, Bindings) -> fValueList, NewBindingsg
[page 88] Evaluate a list of expressions

� expr list(ExpressionList, Bindings, LocalFunctionHandler) ->
fValueList, NewBindingsg
[page 88] Evaluate a list of expressions

� new bindings() -> BindingStruct
[page 89] Return a bindings structure

� bindings(BindingStruct) -> Bindings
[page 89] Return bindings

� binding(Name, BindingStruct) -> Binding
[page 89] Return bindings

� add binding(Name, Value, Bindings) -> BindingStruct
[page 89] Add a binding

� del binding(Name, Bindings) -> BindingStruct
[page 89] Delete a binding

erl id trans

The following functions are exported:

� parse transform(Forms, Options) -> Forms
[page 91] Transform Erlang forms

11STDLIB

STDLIB Reference Manual

erl internal

The following functions are exported:

� bif(Name, Arity) -> bool()
[page 92] Test for an Erlang BIF

� guard bif(Name, Arity) -> bool()
[page 92] Test for an Erlang BIF allowed in guards

� type test(Name, Arity) -> bool()
[page 92] Test for a valid type test

� arith op(OpName, Arity) -> bool()
[page 92] Test for an arithmetic operator

� bool op(OpName, Arity) -> bool()
[page 92] Test for a Boolean operator

� comp op(OpName, Arity) -> bool()
[page 93] Test for a comparison operator

� list op(OpName, Arity) -> bool()
[page 93] Test for a list operator

� send op(OpName, Arity) -> bool()
[page 93] Test for a send operator

� op type(OpName, Arity) -> Type
[page 93] Return operator type

erl lint

The following functions are exported:

� module(AbsForms) -> fok,Warningsg | ferror,Errors,Warningsg
[page 94] Check a module for errors

� module(AbsForms, FileName) -> fok,Warningsg |
ferror,Errors,Warningsg
[page 94] Check a module for errors

� module(AbsForms, FileName, CompileOptions) -> fok,Warningsg |
ferror,Errors,Warningsg
[page 94] Check a module for errors

� is guard test(Expr) -> bool()
[page 95] Test for a guard test

� format error(ErrorDescriptor) -> string()
[page 95] Format an error descriptor

erl parse

The following functions are exported:

� parse form(Tokens) -> fok, AbsFormg | ferror, ErrorInfog
[page 96] Parse an Erlang form

� parse exprs(Tokens) -> fok, Expr listg | ferror, ErrorInfog
[page 96] Parse Erlang expressions

12 STDLIB

STDLIB Reference Manual

� parse term(Tokens) -> fok, Termg | ferror, ErrorInfog
[page 96] Parse an Erlang term

� format error(ErrorDescriptor) -> string()
[page 97] Format an error descriptor

� tokens(AbsTerm) -> Tokens
[page 97] Generate a list of tokens for an expression

� tokens(AbsTerm, MoreTokens) -> Tokens
[page 97] Generate a list of tokens for an expression

� normalise(AbsTerm) -> Data
[page 97] Convert abstract form to an Erlang term

� abstract(Data) -> AbsTerm
[page 97] Convert a Erlang term into an abstract form

erl pp

The following functions are exported:

� form(Form) -> DeepCharList
[page 99] Pretty print a form

� form(Form, HookFunction) -> DeepCharList
[page 99] Pretty print a form

� attribute(Attribute) -> DeepCharList
[page 99] Pretty print an attribute

� attribute(Attribute, HookFunction) -> DeepCharList
[page 99] Pretty print an attribute

� function(Function) -> DeepCharList
[page 99] Pretty print a function

� function(Function, HookFunction) -> DeepCharList
[page 99] Pretty print a function

� guard(Guard) -> DeepCharList
[page 99] Pretty print a guard

� guard(Guard, HookFunction) -> DeepCharList
[page 99] Pretty print a guard

� exprs(Expressions) -> DeepCharList
[page 100] Pretty print Expressions

� exprs(Expressions, HookFunction) -> DeepCharList
[page 100] Pretty print Expressions

� exprs(Expressions, Indent, HookFunction) -> DeepCharList
[page 100] Pretty print Expressions

� expr(Expression) -> DeepCharList
[page 100] Pretty print one Expression

� expr(Expression, HookFunction) -> DeepCharList
[page 100] Pretty print one Expression

� expr(Expression, Indent, HookFunction) -> DeepCharList
[page 100] Pretty print one Expression

� expr(Expression, Indent, Precedence, HookFunction) ->->
DeepCharList
[page 100] Pretty print one Expression

13STDLIB

STDLIB Reference Manual

erl scan

The following functions are exported:

� string(CharList,StartLine]) -> fok, Tokens, EndLineg | Error
[page 102] Scan a string and returns the Erlang tokens

� string(CharList) -> fok, Tokens, EndLineg | Error
[page 102] Scan a string and returns the Erlang tokens

� tokens(Continuation, CharList, StartLine) ->Return
[page 102] Re-entrant scanner

� reserved word(Atom) -> bool()
[page 103] Test for a reserved word

� format error(ErrorDescriptor) -> string()
[page 103] Format an error descriptor

ets

The following functions are exported:

� all() -> [Tab]
[page 105] Return a list of all ETS tables.

� delete(Tab) -> true
[page 105] Delete an entire ETS table.

� delete(Tab, Key) -> true
[page 105] Delete all objects with a given key from an ETS table.

� delete all objects(Tab) -> true
[page 105] Delete all objects in an ETS table.

� delete object(Tab,Object) -> true
[page 105] Deletes a specific from an ETS table.

� file2tab(Filename) -> fok,Tabg | ferror,Reasong
[page 105] Read an ETS table from a file.

� first(Tab) -> Key | ’$end of table’
[page 105] Return the first key in an ETS table.

� fixtable(Tab, true|false) -> true | false
[page 106] Fixe an ETS table for safe traversal (obsolete).

� foldl(Function, Acc0, Tab) -> Acc1
[page 106] Fold a function over an ETS table

� foldr(Function, Acc0, Tab) -> Acc1
[page 106] Fold a function over an ETS table

� from dets(Tab, DetsTab) -> Tab
[page 106] Fill an ETS table withe objects from a DETS table.

� i() -> void()
[page 107] Display information about all ETS tables on tty.

� i(Tab) -> void()
[page 107] Browse an ETS table on tty.

� info(Tab) -> [fItem,Valueg] | undefined
[page 107] Return information about an ETS table.

14 STDLIB

STDLIB Reference Manual

� info(Tab, Item) -> Value | undefined
[page 107] Return the information associated with given item for an ETS table.

� init table(Name, InitFun) -> true
[page 108] Replace all objects of an ETS table.

� insert(Tab, ObjectOrObjects) -> true
[page 108] Insert an object into an ETS table.

� last(Tab) -> Key | ’$end of table’
[page 108] Return the last key in an ETS table of type ordered set.

� lookup(Tab, Key) -> [Object]
[page 109] Return all objects with a given key in an ETS table.

� lookup element(Tab, Key, Pos) -> Elem
[page 109] Return the Pos:th element of all objects with a given key in an ETS
table.

� match(Tab, Pattern) -> [Match]
[page 109] Match the objects in an ETS table against a pattern.

� match(Tab, Pattern, Limit) -> f[Match],Continuationg |
’$end of table’
[page 110] Match the objects in an ETS table against a pattern and returns part of
the answers.

� match(Continuation) -> f[Match],Continuationg | ’$end of table’
[page 110] Continues matching objects in an ETS table.

� match delete(Tab, Pattern) -> true
[page 110] Delete all objects which match a given pattern from an ETS table.

� match object(Tab, Pattern) -> [Object]
[page 110] Match the objects in an ETS table against a pattern.

� match object(Tab, Pattern, Limit) -> f[Match],Continuationg |
’$end of table’
[page 111] Match the objects in an ETS table against a pattern and returns part of
the answers.

� match object(Continuation) -> f[Match],Continuationg |
’$end of table’
[page 111] Continues matching objects in an ETS table.

� member(Tab, Key) -> true | false
[page 111] Tests for occurrence of a key in an ETS table

� new(Name, Options) -> tid()
[page 111] Create a new ETS table.

� next(Tab, Key1) -> Key2 | ’$end of table’
[page 112] Return the next key in an ETS table.

� prev(Tab, Key1) -> Key2 | ’$end of table’
[page 113] Return the previous key in an ETS table of type ordered set.

� rename(Tab, Name) -> Name
[page 113] Rename a named ETS table.

� safe fixtable(Tab, true|false) -> true | false
[page 113] Fix an ETS table for safe traversal.

� select(Tab, MatchSpec) -> [Object]
[page 114] Match the objects in an ETS table against a match spec.

15STDLIB

STDLIB Reference Manual

� select(Tab, MatchSpec, Limit) -> f[Match],Continuationg |
’$end of table’
[page 115] Match the objects in an ETS table against a match spec and returns
part of the answers.

� select(Continuation) -> f[Match],Continuationg | ’$end of table’
[page 115] Continues matching objects in an ETS table.

� slot(Tab, I) -> [Object] | ’$end of table’
[page 116] Return all objects in a given slot of an ETS table.

� tab2file(Tab, Filename) -> ok | ferror,Reasong
[page 116] Dump an ETS table to a file.

� tab2list(Tab) -> [Object]
[page 116] Return a list of all objects in an ETS table.

� test ms(Tuple, MatchSpec) -> fok, Resultg | ferror, Errorsg
[page 116] Test a match spec for use in ets:select/2.

� to dets(Tab, DetsTab) -> Tab
[page 117] Fill a DETS table withe objects from an ETS table.

� update counter(Tab, Key, fPos,Incrg) -> Result
[page 117] Update a counter object in an ETS table.

� update counter(Tab, Key, Incr) -> Result
[page 117] Update a counter object in an ETS table.

file sorter

The following functions are exported:

� sort(FileName) -> Reply
[page 121] Sort terms on files.

� sort(Input, Output) -> Reply
[page 121] Sort terms on files.

� sort(Input, Output, Options) -> Reply
[page 121] Sort terms on files.

� keysort(KeyPos, FileName) -> Reply
[page 121] Sort terms on files by key.

� keysort(KeyPos, Input, Output) -> Reply
[page 121] Sort terms on files by key.

� keysort(KeyPos, Input, Output, Options) -> Reply
[page 121] Sort terms on files by key.

� merge(FileNames, Output) -> Reply
[page 121] Merge terms on files.

� merge(FileNames, Output, Options) -> Reply
[page 121] Merge terms on files.

� keymerge(KeyPos, FileNames, Output) -> Reply
[page 122] Merge terms on files by key.

� keymerge(KeyPos, FileNames, Output, Options) -> Reply
[page 122] Merge terms on files by key.

� check(FileName) -> Reply
[page 122] Check whether terms on files are sorted.

16 STDLIB

STDLIB Reference Manual

� check(FileNames, Options) -> Reply
[page 122] Check whether terms on files are sorted.

� keycheck(KeyPos, FileName) -> CheckReply
[page 122] Check whether terms on files are sorted by key.

� keycheck(KeyPos, FileNames, Options) -> Reply
[page 122] Check whether terms on files are sorted by key.

filename

The following functions are exported:

� absname(Filename) -> Absname
[page 123] Convert a relative Filename to an absolute name

� absname(Filename, Directory) -> Absname
[page 123] Convert the relative Filename to an absolute name, based on
Directory.

� basename(Filename)
[page 124] Return the part of the Filename after the last directory separator

� basename(Filename,Ext) -> string()
[page 124] Return the last component of Filename with Extstripped

� dirname(Filename) -> string()
[page 124] Return the directory part of a path name

� extension(Filename) -> string() | []
[page 124] Return the file extension

� join(Components) -> string()
[page 125] Join a list of file name Components with directory separators

� join(Name1, Name2) -> string()
[page 125] Join two file name components with directory separators.

� nativename(Path) -> string()
[page 125] Return the native form of a file Path

� pathtype(Path) -> absolute | relative | volumerelative
[page 125] Return the type of a Path

� rootname(Filename) -> string()
[page 126] Return all characters in Filename, except the extension.

� rootname(Filename, Ext) -> string()
[page 126] Return all characters in Filename, except the extension.

� split(Filename) -> Components
[page 126] Return a list whose elements are the file name components of
Filename.

� find src(Module) -> fSourceFile, Optionsg
[page 126] Find the Filename and compilation options for a compiled Module.

� find src(Module, Rules) -> fSourceFile, Optionsg
[page 126] Find the Filename and compilation options for a compiled Module.

17STDLIB

STDLIB Reference Manual

gb sets

The following functions are exported:

� empty()
[page 128] get empty set

� is empty(S)
[page 128] check if empty

� size(S)
[page 128] get number of elements

� singleton(X)
[page 128] new set with one element

� is member(X, S)
[page 128] check for member

� insert(X, S)
[page 129] insert new element

� add(X, S)
[page 129] add element

� delete(X, S)
[page 129] delete element

� balance(S)
[page 129] rebalance tree representation

� union(S1, S2)
[page 129] union of set

� union(Ss)
[page 129] union of list of sets

� intersection(S1, S2)
[page 129] intersection of sets

� intersection(Ss)
[page 129] intersection of list of sets

� difference(S1, S2)
[page 129] difference of sets

� is subset(S1, S2)
[page 129] check for subset

� to list(S)
[page 130] get list from set

� from list(List)
[page 130] make set from list

� from ordset(L)
[page 130] make set from ordset

� take smallest(S)
[page 130] extract smallest element

� iterator(S)
[page 130] make iterator on set

� next(T)
[page 130] traverse with iterator

18 STDLIB

STDLIB Reference Manual

� filter(P, S)
[page 130] filter with predicate

� fold(F, A, S)
[page 130] fold with fun

� is set(S)
[page 130] not recommended

gb trees

The following functions are exported:

� empty()
[page 131] returns empty tree

� is empty(T)
[page 131] true if tree is empty

� size(T)
[page 131] number of nodes in tree

� lookup(X, T)
[page 131] looks up key in tree

� get(X, T)
[page 131] retreives value stored with key

� insert(X, V, T)
[page 132] inserts key and value in tree

� update(X, V, T)
[page 132] updates key to new value

� enter(X, V, T)
[page 132] inserts or updates key with value

� delete(X, T)
[page 132] removes key

� delete any(X, T)
[page 132] removes key if present

� balance(T)
[page 132] rebalance tree

� is defined(X, T)
[page 132] check if key exist

� keys(T)
[page 132] keys as list

� values(T)
[page 132] values as list

� to list(T)
[page 132] keys and values as tuple-list

� from orddict(L)
[page 132] make tree from orddict

� take smallest(T)
[page 133] extract smallest key

� iterator(T)
[page 133] get iterator on tree

� next(S)
[page 133] iterate using iterator

19STDLIB

STDLIB Reference Manual

gen event

The following functions are exported:

� start() -> Result
[page 135] Create a generic event manager.

� start(EventMgrName) -> Result
[page 135] Create a generic event manager.

� start link() -> Result
[page 135] Create a generic event manager.

� start link(EventMgrName) -> Result
[page 135] Create a generic event manager.

� add handler(EventMgrRef, Handler, Args) -> Result
[page 135] Add an event handler to a generic event manager.

� add sup handler(EventMgrRef, Handler, Args) -> Result
[page 136] Add a supervised event handler to a generic event manager.

� notify(EventMgrRef, Event) -> ok
[page 136] Notify an event manager about an event.

� sync notify(EventMgrRef, Event) -> ok
[page 136] Notify an event manager about an event.

� call(EventMgrRef, Handler, Request) -> Result
[page 137] Make a synchronous call to a generic event manager.

� call(EventMgrRef, Handler, Request, Timeout) -> Result
[page 137] Make a synchronous call to a generic event manager.

� delete handler(EventMgrRef, Handler, Args) -> Result
[page 137] Delete an event handler from a generic event manager.

� swap handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) ->
Result
[page 138] Replace an event handler in a generic event manager.

� swap sup handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) ->
Result
[page 139] Replace an event handler in a generic event manager.

� which handlers(EventMgrRef) -> [Handler]
[page 139] Return all event handlers installed in a generic event manager.

� stop(EventMgrRef) -> ok
[page 139] Terminate a generic event manager.

� Module:init(InitArgs) -> fok,Stateg
[page 140] Initialize an event handler.

� Module:handle event(Event, State) -> Result
[page 140] Handle an event.

� Module:handle call(Request, State) -> Result
[page 141] Handle a synchronous request.

� Module:handle info(Info, State) -> Result
[page 141] Handle an incoming message.

� Module:terminate(Arg, State) -> term()
[page 141] Clean up before deletion.

� Module:code change(OldVsn, State, Extra) -> fok, NewStateg
[page 142] Update the internal state due to code replacement

20 STDLIB

STDLIB Reference Manual

gen fsm

The following functions are exported:

� start(Module, Args, Options) -> Result
[page 144] Create a generic FSM process.

� start(FsmName, Module, Args, Options) -> Result
[page 144] Create a generic FSM process.

� start link(Module, Args, Options) -> Result
[page 144] Create a generic FSM process.

� start link(FsmName, Module, Args, Options) -> Result
[page 144] Create a generic FSM process.

� send event(FsmRef, Event) -> ok
[page 145] Send an event asynchronously to a generic FSM.

� send all state event(FsmRef, Event) -> ok
[page 145] Send an event asynchronously to a generic FSM.

� sync send event(FsmRef, Event) -> Reply
[page 145] Send an event synchronously to a generic FSM.

� sync send event(FsmRef, Event, Timeout) -> Reply
[page 145] Send an event synchronously to a generic FSM.

� sync send all state event(FsmRef, Event) -> Reply
[page 146] Send an event syncronously to a generic FSM.

� sync send all state event(FsmRef, Event, Timeout) -> Reply
[page 146] Send an event syncronously to a generic FSM.

� reply(Caller, Reply) -> true
[page 146] Send a reply to a caller.

� Module:init(Args) -> Result
[page 147] Initialize process and internal state name and state data.

� Module:StateName(Event, StateData) -> Result
[page 147] Handle an asynchronous event.

� Module:handle event(Event, StateName, StateData) -> Result
[page 148] Handle an asynchronous event.

� Module:StateName(Event, From, StateData) -> Result
[page 148] Handle a synchronous event.

� Module:handle sync event(Event, From, StateName, StateData) ->
Result
[page 149] Handle a synchronous event.

� Module:handle info(Info, StateName, StateData) -> Result
[page 149] Handle an incoming message.

� Module:terminate(Reason, StateName, StateData)
[page 150] Clean up before termination.

� Module:code change(OldVsn, StateName, StateData, Extra) -> fok,
NextStateName, NewStateDatag
[page 150] Update the state data due to code replacement.

21STDLIB

STDLIB Reference Manual

gen server

The following functions are exported:

� start(Module, Args, Options) -> Result
[page 152] Create a generic server process.

� start(ServerName, Module, Args, Options) -> Result
[page 152] Create a generic server process.

� start link(Module, Args, Options) -> Result
[page 152] Create a generic server process.

� start link(ServerName, Module, Args, Options) -> Result
[page 152] Create a generic server process.

� call(ServerRef, Request) -> Reply
[page 153] Make a synchronous call to a generic server.

� call(ServerRef, Request, Timeout) -> Reply
[page 153] Make a synchronous call to a generic server.

� multi call(Name, Request) -> Result
[page 154] Make a synchronous call to several generic servers.

� multi call(Nodes, Name, Request) -> Result
[page 154] Make a synchronous call to several generic servers.

� multi call(Nodes, Name, Request, Timeout) -> Result
[page 154] Make a synchronous call to several generic servers.

� cast(ServerRef, Request) -> ok
[page 155] Send an asynchronous request to a generic server.

� abcast(Name, Request) -> abcast
[page 155] Send an asynchronous request to several generic servers.

� abcast(Nodes, Name, Request) -> abcast
[page 155] Send an asynchronous request to several generic servers.

� reply(Client, Reply) -> true
[page 156] Send a reply to a client.

� Module:init(Args) -> Result
[page 156] Initialize process and internal state.

� Module:handle call(Request, From, State) -> Result
[page 156] Handle a synchronous request.

� Module:handle cast(Request, State) -> Result
[page 157] Handle an asynchronous request.

� Module:handle info(Info, State) -> Result
[page 157] Handle an incoming message.

� Module:terminate(Reason, State)
[page 158] Clean up before termination.

� Module:code change(OldVsn, State, Extra) -> fok, NewStateg
[page 158] Update the internal state due to code replacement.

22 STDLIB

STDLIB Reference Manual

io

The following functions are exported:

� put chars([IoDevice,] Chars)
[page 160] Write characters to standard output

� nl([IoDevice])
[page 160] Output a newline

� get chars([IoDevice,] Prompt, Count)
[page 160] Read characters from standard input

� get line([IoDevice,] Prompt)
[page 160] Read a line from standard input

� write([IoDevice,] Term)
[page 160] Write a term

� read([IoDevice,] Prompt)
[page 160] Read a term

� fwrite(Format)
[page 161] Write formatted output

� format(Format)
[page 161] Write formatted output

� fwrite([IoDevice,] Format, Arguments)
[page 161] Write formatted output

� format([IoDevice,] Format, Arguments)
[page 161] Write formatted output

� fread([IoDevice,] Prompt, Format)
[page 164] Read formatted input

� scan erl exprs(Prompt)
[page 165] Read Erlang tokens

� scan erl exprs([IoDevice,] Prompt, StartLine)
[page 165] Read Erlang tokens

� scan erl form(Prompt)
[page 165] Read Erlang tokens

� scan erl form(IoDevice, Prompt[, StartLine])
[page 165] Read Erlang tokens

� parse erl exprs(Prompt)
[page 165] Read Erlang expressions

� parse erl exprs(IoDevice, Prompt[, StartLine])
[page 165] Read Erlang expressions

� parse erl form(Prompt)
[page 166] Read Erlang form

� parse erl form(IoDevice, Prompt[, StartLine])
[page 166] Read Erlang form

23STDLIB

STDLIB Reference Manual

io lib

The following functions are exported:

� nl()
[page 167] Return a newline

� write(Term)
[page 167] Write a term

� write(Term, Depth)
[page 167] Write a term

� print(Term)
[page 167] Pretty print a term

� print(Term, Column, LineLength, Depth)
[page 167] Pretty print a term

� fwrite(Format, Data)
[page 167] List formatted output

� format(Format, Data)
[page 167] List formatted output

� fread(Format, String)
[page 167] List formatted input

� fread(Continuation, CharList, Format)
[page 168] Re-entrant formatted reader

� write atom(Atom)
[page 168] Return an atom

� write string(String)
[page 168] Return a string

� write char(Integer)
[page 168] Return a character

� indentation(String, StartIndent)
[page 168] Indentation after printing string

� char list(CharList) -> bool()
[page 168] Test for a list of characters

� deep char list(CharList)
[page 169] Test for a deep list of characters

� printable list(CharList)
[page 169] Test for a list of printable characters

lib

The following functions are exported:

� flush receive() -> void()
[page 170] Flush messages

� error message(Format, Args)
[page 170] Print error message

� progname() -> atom()
[page 170] Return Erlang starter

24 STDLIB

STDLIB Reference Manual

� nonl(List1)
[page 170] Remove last newline

� send(To, Msg)
[page 170] Send a message

� sendw(To, Msg)
[page 170] Send a message and waits fo an answer

lists

The following functions are exported:

� append(ListOfLists) -> List1
[page 171] Append a list of lists

� append(List1, List2) -> List3
[page 171] Append two lists

� concat(Things) -> string()
[page 172] Concatenate a list of atoms

� delete(Element, List1) -> List2
[page 172] Delete an element in a list

� duplicate(N, Element) -> List
[page 172] Make N copies of element

� flatlength(DeepList) -> int()
[page 172] Length of flattened deep list

� flatten(DeepList) -> List
[page 172] Flatten a deep list

� flatten(DeepList, Tail) -> List
[page 172] Flatten a deep list

� keydelete(Key, N, TupleList1) -> TupleList2
[page 173] Delete a tuple for a tuple list

� keymember(Key, N, TupleList) -> bool()
[page 173] Test for a key in a list of tuples

� keymerge(N, List1, List2)
[page 173] Merge two key-sorted lists

� keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2
[page 173] Replace tuple in tuple list

� keysearch(Key, N, TupleList) -> Result
[page 173] Extract value of key in a list of tuples

� keysort(N, List1) -> List2
[page 173] Sort a list by key

� last(List) -> Element
[page 174] Return last element in a list

� max(List) -> Max
[page 174] Return maximum element of list

� member(Element, List) -> bool()
[page 174] Test for membership of a list

� merge(ListOfLists) -> List1
[page 174] Merge a list of sorted lists

25STDLIB

STDLIB Reference Manual

� merge(List1, List2) -> List3
[page 174] Merge two sorted lists

� merge(Fun, List1, List2) -> List
[page 174] Merge two sorted list

� merge3(List1, List2, List3) -> List4
[page 175] Merge three sorted lists

� min(List) -> Min
[page 175] Return minimum element of list

� nth(N, List) -> Element
[page 175] Extract element from a list

� nthtail(N, List1) -> List2
[page 175] Return the N’th tail in List1

� prefix(List1, List2) -> bool()
[page 175] Test for list prefix

� reverse(List1) -> List2
[page 175] Reverse a list

� reverse(List1, List2) -> List3
[page 176] Reverse a list appending a tail

� seq(From, To) -> [int()]
[page 176] Generate a sequence of integers

� seq(From, To, Incr) -> [int()]
[page 176] Generate a sequence of integers

� sort(List1) -> List2
[page 176] Sort a list

� sort(Fun, List1) -> List2
[page 176] Sort a list

� sublist(List, N) -> List1
[page 176] Return the first N elements of List

� sublist(List1, Start, Length) -> List2
[page 177] Return a sub-list of list

� subtract(List1, List2) -> List3
[page 177] Subtract the element in one list from another list

� suffix(List1, List2) -> bool()
[page 177] Test for list suffix

� sum(List) -> number()
[page 177] Return sum of elements in a list

� ukeymerge(N, List1, List2)
[page 177] Merge two key-sorted lists and remove consecutive duplicates

� ukeysort(N, List1) -> List2
[page 177] Sort a list by key and remove consecutive duplicates

� umerge(ListOfLists) -> List1
[page 178] Merge a list of sorted lists without duplicates

� umerge(List1, List2) -> List3
[page 178] Merge two sorted lists without duplicates

� umerge(Fun, List1, List2) -> List
[page 178] Sort a list

26 STDLIB

STDLIB Reference Manual

� umerge3(List1, List2, List3) -> List4
[page 178] Merge three sorted lists without duplicates

� usort(List1) -> List2
[page 178] Sort a list and remove duplicates

� usort(Fun, List1) -> List2
[page 178] Sort a list and remove duplicates

� all(Pred, List) -> bool()
[page 179] Return true if all elements in the list satisfy Pred

� any(Pred, List) -> bool()
[page 179] Return true if any of the elements X in the list satisfies Pred(X)

� dropwhile(Pred, List1) -> List2
[page 179] Drop elements from List1 while Pred is true

� filter(Pred, List1) -> List2
[page 179] Choose elements which satisfy a predicate

� flatmap(Function, List1) -> Element
[page 179] Map and flatten in one pass

� foldl(Function, Acc0, List) -> Acc1
[page 179] Fold a function over a list

� foldr(Function, Acc0, List) -> Acc1
[page 180] Fold a function over a list

� foreach(Function, List) -> void()
[page 180] Apply function to each element of a list

� map(Func, List1) -> List2
[page 180] Map a function over a list

� mapfoldl(Function, Acc0, List1) -> fList2, Accg
[page 180] Map and fold in one pass

� mapfoldr(Function, Acc0, List1) -> fList2, Accg
[page 181] Map and fold in one pass

� splitwith(Pred, List) -> fList1, List2g
[page 181] Partition List1 into two lists according to Pred

� takewhile(Pred, List1) -> List2
[page 181] Take elements from List1 while Pred is true

log mf h

The following functions are exported:

� init(Dir, MaxBytes, MaxFiles)
[page 182] Initiate the event handler

� init(Dir, MaxBytes, MaxFiles, Pred) -> Args
[page 182] Initiate the event handler

27STDLIB

STDLIB Reference Manual

math

The following functions are exported:

� pi() -> float()
[page 183] A useful number

� sin(X)
[page 183] Diverse math functions

� cos(X)
[page 183] Diverse math functions

� tan(X)
[page 183] Diverse math functions

� asin(X)
[page 183] Diverse math functions

� acos(X)
[page 183] Diverse math functions

� atan(X)
[page 183] Diverse math functions

� atan2(Y, X)
[page 183] Diverse math functions

� sinh(X)
[page 183] Diverse math functions

� cosh(X)
[page 183] Diverse math functions

� tanh(X)
[page 183] Diverse math functions

� asinh(X)
[page 183] Diverse math functions

� acosh(X)
[page 183] Diverse math functions

� atanh(X)
[page 183] Diverse math functions

� exp(X)
[page 183] Diverse math functions

� log(X)
[page 183] Diverse math functions

� log10(X)
[page 183] Diverse math functions

� pow(X, Y)
[page 183] Diverse math functions

� sqrt(X)
[page 183] Diverse math functions

� erf(X) -> float()
[page 183] Error function.

� erfc(X) -> float()
[page 184] Another error function

28 STDLIB

STDLIB Reference Manual

orddict

No functions are exported.

ordsets

No functions are exported.

pg

The following functions are exported:

� create(PgName)
[page 187] Create an empty group

� create(PgName, Node)
[page 187] Create an epmty group on a node

� join(PgName, Pid)
[page 187] Join a Pid to a process group

� send(Pgname, Message)
[page 187] Send a message tuple to all members of a process group

� esend(PgName, Mess)
[page 187] Send a message tuple to all members of a process group except the
current node

� members(PgName)
[page 187] >Return a list of the current members in the process group

pool

The following functions are exported:

� start(Name)
[page 188] >Start a new pool

� start(Name, Args)
[page 188] >Start a new pool

� attach(Node)
[page 188] Ensure that a pool master is running

� stop()
[page 188] Stop the pool and kill all the slave nodes

� get nodes()
[page 189] Return a list of the current member nodes of the pool

� pspawn(Mod, Fun, Args)
[page 189] Spawn a process on the expected lowest future loaded pool node

� pspawn link(Mod, Fun, Args)
[page 189] Spawn links a process on the expected lowest future loaded pool node

� get node()
[page 189] Return the node ID of the expected lowest future loaded node

� new node(Host, Name)
[page 189] Start a new node and attach it to an already existing pool

29STDLIB

STDLIB Reference Manual

proc lib

The following functions are exported:

� spawn(Module,Func,Args) -> Pid
[page 190] Spawn a new process

� spawn(Node,Module,Func,Args) -> Pid
[page 190] Spawn a new process

� spawn link(Module,Func,Args) -> Pid
[page 190] Spawn a new process and sets a link

� spawn link(Node,Module,Func,Args) -> Pid
[page 190] Spawn a new process and sets a link

� spawn opt(Module,Func,Args,Opts) -> Pid
[page 191] Spawn a new process with given options

� start(Module,Func,Args) -> Ret
[page 191] Start a new process synchronously

� start(Module,Func,Args,Time) -> Ret
[page 191] Start a new process synchronously

� start(Module,Func,Args,Time,SpawnOpts) -> Ret
[page 191] Start a new process synchronously

� start link(Module,Func,Args) -> Ret
[page 191] Start a new process synchronously

� start link(Module,Func,Args,Time) -> Ret
[page 191] Start a new process synchronously

� start link(Module,Func,Args,Time,SpawnOpts) -> Ret
[page 191] Start a new process synchronously

� init ack(Parent, Ret) -> void()
[page 191] Used by a process when it has started

� init ack(Ret) -> void()
[page 191] Used by a process when it has started

� format(CrashReport) -> string()
[page 192] Format a crash report

� initial call(PidOrPinfo) -> fModule,Function,Argsg | false
[page 192] Extract the initial call of a proc lib spawned process

� translate initial call(PidOrPinfo) -> fModule,Function,Arityg
[page 192] Extract and translate the initial call of a proc lib spawned process

queue

The following functions are exported:

� new() -> Queue
[page 194] Create a new empty FIFO queue

� in(Item, Q1) -> Q2
[page 194] Insert an item into a queue

� out(Q) -> Result
[page 194] Remove an item from a queue

� to list(Q) -> list()
[page 194] Convert a queue to a list

30 STDLIB

STDLIB Reference Manual

random

The following functions are exported:

� seed() -> ran()
[page 195] Seeds random number generation with default values

� seed(A1, A2, A3) -> ran()
[page 195] Seeds random number generator

� seed0() -> ran()
[page 195] Return default state for random number generation

� uniform()-> float()
[page 195] Return a random float

� uniform(N) -> int()
[page 195] Return a random integer

� uniform s(State0) -> ffloat(), State1g
[page 196] Return a random float

� uniform s(N, State0) -> fint(), State1g
[page 196] Return a random integer

regexp

The following functions are exported:

� match(String, RegExp) -> MatchRes
[page 197] Match a regular expression

� first match(String, RegExp) -> MatchRes
[page 197] Match a regular expression

� matches(String, RegExp) -> MatchRes
[page 197] Match a regular expression

� sub(String, RegExp, New) -> SubRes
[page 198] Substitute the first occurrence of a regular expression

� gsub(String, RegExp, New) -> SubRes
[page 198] Substitute all occurrences of a regular expression

� split(String, RegExp) -> SplitRes
[page 198] Split a string into fields

� sh to awk(ShRegExp) -> AwkRegExp
[page 199] Convert an sh regular expression into an AWK one

� parse(RegExp) -> ParseRes
[page 199] Parse a regular expression

� format error(ErrorDescriptor) -> string()
[page 199] Format an error descriptor

31STDLIB

STDLIB Reference Manual

sets

The following functions are exported:

� new() -> Set
[page 202] Return an empty set

� is set(Set) -> bool()
[page 202] Test for an Set

� size(Set) -> int()
[page 202] Return the number of elements in a set

� to list(Set) -> List
[page 202] Convert an Set into a list

� from list(List) -> Set
[page 202] Convert a list into an Set

� is element(Element, Set) -> bool()
[page 202] Test for membership of an Set

� add element(Element, Set1) -> Set2
[page 203] Add an element to an Set

� del element(Element, Set1) -> Set2
[page 203] Remove an element from an Set

� union(Set1, Set2) -> Set3
[page 203] Return the union of two Sets

� union(SetList) -> Set
[page 203] Return the union of a list of Sets

� intersection(Set1, Set2) -> Set3
[page 203] Return the intersection of two Sets

� intersection(SetList) -> Set
[page 203] Return the intersection of a list of Sets

� subtract(Set1, Set2) -> Set3
[page 203] Return the difference of two Sets

� is subset(Set1, Set2) -> bool()
[page 204] Test for subset

� fold(Function, Acc0, Set) -> Acc1
[page 204] Fold over set elements

� filter(Pred, Set1) -> Set2
[page 204] Filter set elements

shell

The following functions are exported:

� history(N) -> integer()
[page 211] Sets the number of previous commands to keep

� results(N) -> integer()
[page 211] Sets the number of previous commands to keep

32 STDLIB

STDLIB Reference Manual

shell default

No functions are exported.

slave

The following functions are exported:

� start(Host)
[page 213] Start a slave node at Host

� start link(Host)
[page 213] Start a slave node at Host

� start(Host, Name)
[page 213] Start a slave node at Host called Name@Host

� start link(Host, Name)
[page 214] Start a slave node at Host called Name@Host

� start(Host, Name, Args) -> fok, Nodeg | ferror, ErrorInfog
[page 214] Start a slave node at Host called Name@Host and passes Args to new
node

� start link(Host, Name, Args)
[page 214] Start a slave node at Host called Name@Host

� stop(Node)
[page 215] Stop (kill) a node

� pseudo([Master | ServerList])
[page 215] Start a number of pseudo servers

� pseudo(Master, ServerList)
[page 215] Start a number of pseudo servers

� relay(Pid)
[page 215] Run a pseudo server

sofs

The following functions are exported:

� a function(Tuples [, Type]) -> Function
[page 219] Create a function.

� canonical relation(SetOfSets) -> BinRel
[page 220] Return the canonical map.

� composite(Function1, Function2) -> Function3
[page 220] Return the composite of two functions.

� constant function(Set, AnySet) -> Function
[page 220] Create the function that maps each element of a set onto another set.

� converse(BinRel1) -> BinRel2
[page 220] Return the converse of a binary relation.

� difference(Set1, Set2) -> Set3
[page 221] Return the difference of two sets.

� digraph to family(Graph [, Type]) -> Family
[page 221] Create a family from a directed graph.

33STDLIB

STDLIB Reference Manual

� domain(BinRel) -> Set
[page 221] Return the domain of a binary relation.

� drestriction(BinRel1, Set) -> BinRel2
[page 221] Return a restriction of a binary relation.

� drestriction(SetFun, Set1, Set2) -> Set3
[page 222] Return a restriction of a relation.

� empty set() -> Set
[page 222] Return the untyped empty set.

� family(Tuples [, Type]) -> Family
[page 222] Create a family of subsets.

� family difference(Family1, Family2) -> Family3
[page 222] Return the difference of two families.

� family domain(Family1) -> Family2
[page 222] Return a family of domains.

� family field(Family1) -> Family2
[page 223] Return a family of fields.

� family intersection(Family1) -> Family2
[page 223] Return the intersection of a family of sets of sets.

� family intersection(Family1, Family2) -> Family3
[page 223] Return the intersection of two families.

� family projection(SetFun, Family1) -> Family2
[page 223] Return a family of modified subsets.

� family range(Family1) -> Family2
[page 224] Return a family of ranges.

� family specification(Fun, Family1) -> Family2
[page 224] Select a subset of a family using a predicate.

� family to digraph(Family [, GraphType]) -> Graph
[page 224] Create a directed graph from a family.

� family to relation(Family) -> BinRel
[page 225] Create a binary relation from a family.

� family union(Family1) -> Family2
[page 225] Return the union of a family of sets of sets.

� family union(Family1, Family2) -> Family3
[page 225] Return the union of two families.

� field(BinRel) -> Set
[page 226] Return the field of a binary relation.

� from external(ExternalSet, Type) -> AnySet
[page 226] Create a set.

� from sets(ListOfSets) -> Set
[page 226] Create a set out of a list of sets.

� from sets(TupleOfSets) -> Ordset
[page 226] Create an ordered set out of a tuple of sets.

� from term(Term [, Type]) -> AnySet
[page 226] Create a set.

� image(BinRel, Set1) -> Set2
[page 227] Return the image of a set under a binary relation.

34 STDLIB

STDLIB Reference Manual

� intersection(SetOfSets) -> Set
[page 227] Return the intersection of a set of sets.

� intersection(Set1, Set2) -> Set3
[page 227] Return the intersection of two sets.

� intersection of family(Family) -> Set
[page 228] Return the intersection of a family.

� inverse(Function1) -> Function2
[page 228] Return the inverse of a function.

� inverse image(BinRel, Set1) -> Set2
[page 228] Return the inverse image of a set under a binary relation.

� is a function(BinRel) -> Bool
[page 228] Test for a function.

� is disjoint(Set1, Set2) -> Bool
[page 228] Test for disjoint sets.

� is empty set(AnySet) -> Bool
[page 229] Test for an empty set.

� is equal(AnySet1, AnySet2) -> Bool
[page 229] Test two sets for equality.

� is set(AnySet) -> Bool
[page 229] Test for an unordered set.

� is sofs set(Term) -> Bool
[page 229] Test for an unordered set.

� is subset(Set1, Set2) -> Bool
[page 229] Test two sets for subset.

� is type(Term) -> Bool
[page 229] Test for a type.

� join(Relation1, I, Relation2, J) -> Relation3
[page 229] Return the join of two relations.

� multiple relative product(TupleOfBinRels, BinRel1) -> BinRel2
[page 230] Return the multiple relative product of a tuple of binary relations and a
relation.

� no elements(ASet) -> NoElements
[page 230] Return the number of elements of a set.

� partition(SetOfSets) -> Partition
[page 230] Return the coarsest partition given a set of sets.

� partition(SetFun, Set) -> Partition
[page 230] Return a partition of a set.

� partition family(SetFun, Set) -> Family
[page 231] Return a family indexing a partition.

� product(TupleOfSets) -> Relation
[page 231] Return the Cartesian product of a tuple of sets.

� product(Set1, Set2) -> BinRel
[page 231] Return the Cartesian product of two sets.

� projection(SetFun, Set1) -> Set2
[page 232] Return a set of substituted elements.

� range(BinRel) -> Set
[page 232] Return the range of a binary relation.

35STDLIB

STDLIB Reference Manual

� relation(Tuples [, Type]) -> Relation
[page 232] Create a relation.

� relation to family(BinRel) -> Family
[page 232] Create a family from a binary relation.

� relative product(TupleOfBinRels [, BinRel1]) -> BinRel2
[page 233] Return the relative product of a tuple of binary relations and a binary
relation.

� relative product(BinRel1, BinRel2) -> BinRel3
[page 233] Return the relative product of two binary relations.

� relative product1(BinRel1, BinRel2) -> BinRel3
[page 233] Return the relative product of two binary relations.

� restriction(BinRel1, Set) -> BinRel2
[page 233] Return a restriction of a binary relation.

� restriction(SetFun, Set1, Set2) -> Set3
[page 234] Return a restriction of a set.

� set(Terms [, Type]) -> Set
[page 234] Create a set of atoms.

� specification(Fun, Set1) -> Set2
[page 234] Select a subset using a predicate.

� strict relation(BinRel1) -> BinRel2
[page 234] Return the strict relation corresponding to a given relation.

� substitution(SetFun, Set1) -> Set2
[page 235] Return a function with a given set as domain.

� symdiff(Set1, Set2) -> Set3
[page 235] Return the symmetric difference of two sets.

� symmetric partition(Set1, Set2) -> fSet3, Set4, Set5g
[page 236] Return a partition of two sets.

� to external(AnySet) -> ExternalSet
[page 236] Return the elements of a set.

� to sets(ASet) -> Sets
[page 236] Return a list or a tuple of the elements of set.

� type(AnySet) -> Type
[page 236] Return the type of a set.

� union(SetOfSets) -> Set
[page 236] Return the union of a set of sets.

� union(Set1, Set2) -> Set3
[page 236] Return the union of two sets.

� union of family(Family) -> Set
[page 237] Return the union of a family.

� weak relation(BinRel1) -> BinRel2
[page 237] Return the weak relation corresponding to a given relation.

string

The following functions are exported:

36 STDLIB

STDLIB Reference Manual

� len(String) -> Length
[page 238] Return the length of a string

� equal(String1, String2) -> bool()
[page 238] Test string equality

� concat(String1, String2) -> String3
[page 238] Concatenate two strings

� chr(String, Character) -> Index
[page 238] Return the index of the first/last occurrence of Character in String

� rchr(String, Character) -> Index
[page 238] Return the index of the first/last occurrence of Character in String

� str(String, SubString) -> Index
[page 238] Find the index of a substring

� rstr(String, SubString) -> Index
[page 238] Find the index of a substring

� span(String, Chars) -> Length
[page 239] Span characters at start of string

� cspan(String, Chars) -> Length
[page 239] Span characters at start of string

� substr(String, Start) -> SubString
[page 239] Return a substring of String

� substr(String, Start, Length) -> Substring
[page 239] Return a substring of String

� tokens(String, SeparatorList) -> Tokens
[page 239] Split string into tokens

� chars(Character, Number) -> String
[page 239] Returns a string consisting of numbers of characters

� chars(Character, Number, Tail) -> String
[page 239] Returns a string consisting of numbers of characters

� copies(String, Number) -> Copies
[page 240] Copy a string

� words(String) -> Count
[page 240] Count blank separated words

� words(String, Character) -> Count
[page 240] Count blank separated words

� sub word(String, Number) -> Word
[page 240] Extract subword

� sub word(String, Number, Character) -> Word
[page 240] Extract subword

� strip(String) -> Stripped
[page 240] Strip leading or trailing characters

� strip(String, Direction) -> Stripped
[page 240] Strip leading or trailing characters

� strip(String, Direction, Character) -> Stripped
[page 240] Strip leading or trailing characters

� left(String, Number) -> Left
[page 241] Adjust left end of string

37STDLIB

STDLIB Reference Manual

� left(String, Number, Character) -> Left
[page 241] Adjust left end of string

� right(String, Number) -> Right
[page 241] Adjust right end of string

� right(String, Number, Character) -> Right
[page 241] Adjust right end of string

� centre(String, Number) -> Centered
[page 241] Center a string

� centre(String, Number, Character) -> Centered
[page 241] Center a string

� sub string(String, Start) -> SubString
[page 241] Extract a substring

� sub string(String, Start, Stop) -> SubString
[page 242] Extract a substring

supervisor

The following functions are exported:

� start link(Module, Args) -> Result
[page 245] Create a supervisor process.

� start link(SupName, Module, Args) -> Result
[page 245] Create a supervisor process.

� start child(SupRef, ChildSpec) -> Result
[page 245] Dynamically add a child process to a supervisor.

� terminate child(SupRef, Id) -> Result
[page 246] Terminate a child process belonging to a supervisor.

� delete child(SupRef, Id) -> Result
[page 247] Delete a child specification from a supervisor.

� restart child(SupRef, Id) -> Result
[page 247] Restart a terminated child process belonging to a supervisor.

� which children(SupRef) -> [fId,Child,Type,Modulesg]
[page 248] Return information about all children specifications and child processes
belonging to a supervisor.

� check childspecs([ChildSpec]) -> Result
[page 248] Check if child specifications are syntactically correct.

� Module:init(Args) -> Result
[page 249] Return a supervisor specification.

supervisor bridge

The following functions are exported:

� start link(Module, Args) -> Result
[page 250] Create a supervisor bridge process.

� start link(SupBridgeName, Module, Args) -> Result
[page 250] Create a supervisor bridge process.

38 STDLIB

STDLIB Reference Manual

� Module:init(Args) -> Result
[page 251] Initialize process and start subsystem.

� Module:terminate(Reason, State)
[page 251] Clean up and stop subsystem.

sys

The following functions are exported:

� log(Name,Flag)
[page 254] Log system events in memory

� log(Name,Flag,Timeout) -> ok | fok, [system event()]g
[page 254] Log system events in memory

� log to file(Name,Flag)
[page 254] Log system events to the specified file

� log to file(Name,Flag,Timeout) -> ok | ferror, open fileg
[page 254] Log system events to the specified file

� statistics(Name,Flag)
[page 254] Enable or disable the collections of statistics

� statistics(Name,Flag,Timeout) -> ok | fok, Statisticsg
[page 254] Enable or disable the collections of statistics

� trace(Name,Flag)
[page 255] Print all system events on standard io

� trace(Name,Flag,Timeout) -> void()
[page 255] Print all system events on standard io

� no debug(Name)
[page 255] Turn off debugging

� no debug(Name,Timeout) -> void()
[page 255] Turn off debugging

� suspend(Name)
[page 255] Suspend the process

� suspend(Name,Timeout) -> void()
[page 255] Suspend the process

� resume(Name)
[page 255] Resume a suspended process

� resume(Name,Timeout) -> void()
[page 255] Resume a suspended process

� change code(Name, Module, OldVsn, Extra)
[page 255] Send the code change system message to the process

� change code(Name, Module, OldVsn, Extra, Timeout) -> ok | ferror,
Reasong
[page 255] Send the code change system message to the process

� get status(Name)
[page 255] Get the status of the process

� get status(Name,Timeout) -> fstatus, Pid, fmodule, Modg, [PDict,
SysState, Parent, Dbg, Misc]g
[page 255] Get the status of the process

39STDLIB

STDLIB Reference Manual

� install(Name,fFunc,FuncStateg)
[page 256] Install a debug function in the process

� install(Name,fFunc,FuncStateg,Timeout)
[page 256] Install a debug function in the process

� remove(Name,Func)
[page 256] Remove a debug function from the process

� remove(Name,Func,Timeout) -> void()
[page 256] Remove a debug function from the process

� debug options(Options) -> [dbg opt()]
[page 257] Convert a list of options to a debug structure

� get debug(Item,Debug,Default) -> term()
[page 257] Get the data associated with a debug option

� handle debug([dbg opt()],FormFunc,Extra,Event) -> [dbg opt()]
[page 257] Generate a system event

� handle system msg(Msg,From,Parent,Module,Debug,Misc)
[page 257] Take care of system messages

� print log(Debug) -> void()
[page 258] Print the logged events in the debug structure

� Mod:system continue(Parent, Debug, Misc)
[page 258] Called when the process should continue its execution

� Mod:system terminate(Reason, Parent, Debug, Misc)
[page 258] Called when the process should terminate

� Mod:system code change(Misc, Module, OldVsn, Extra) -> fok, NMiscg
[page 258] Called when the process should perform a code change

timer

The following functions are exported:

� start() -> ok
[page 260] Start a global timer server (named timer server).

� apply after(Time, Module, Function, Arguments) -> fok, Trefg |
ferror, Reasong
[page 260] Apply Module:Function(Arguments) after a specified Time.

� send after(Time, Pid, Message) -> fok, TRefg | ferror,Reasong
[page 260] Send Message to Pid after a specified Time.

� send after(Time, Message) -> fok, TRefg | ferror,Reasong
[page 260] Send Message to Pid after a specified Time.

� exit after(Time, Pid, Reason1) -> fok, TRefg | ferror,Reason2g
[page 261] Send an exit signal with Reason after a specified Time.

� exit after(Time, Reason1) -> fok, TRefg | ferror,Reason2g
[page 261] Send an exit signal with Reason after a specified Time.

� kill after(Time, Pid)-> fok, TRefg | ferror,Reason2g
[page 261] Send an exit signal with Reason after a specified Time.

� kill after(Time) -> fok, TRefg | ferror,Reason2g
[page 261] Send an exit signal with Reason after a specified Time.

40 STDLIB

STDLIB Reference Manual

� apply interval(Time, Module, Function, Arguments) -> fok, TRefg |
ferror, Reasong
[page 261] Evaluate Module:Function(Arguments) repeatedly at intervals of
Time.

� send interval(Time, Pid, Message) -> fok, TRefg | ferror, Reasong
[page 261] Send Message repeatedly at intervals of Time.

� send interval(Time, Message) -> fok, TRefg | ferror, Reasong
[page 261] Send Message repeatedly at intervals of Time.

� cancel(TRef) -> fok, cancelg | ferror, Reasong
[page 261] Cancel a previously requested timeout identified by TRef.

� sleep(Time) -> ok
[page 261] Suspend the calling process for Time amount of milliseconds.

� tc(Module, Function, Arguments) -> fTime, Valueg
[page 262] Measure the real time it takes to evaluate apply(Module, Function,
Arguments)

� seconds(Seconds) -> Milliseconds
[page 262] Convert Seconds to Milliseconds.

� minutes(Minutes) -> Milliseconds
[page 262] Converts Minutes to Milliseconds.

� hours(Hours) -> Milliseconds
[page 262] Convert Hours to Milliseconds.

� hms(Hours, Minutes, Seconds) -> Milliseconds
[page 262] Convert Hours+Minutes+Seconds to Milliseconds.

unix

The following functions are exported:

� cmd(String)
[page 264] Make a call and return the answer in a list of characters.

win32reg

The following functions are exported:

� change key(RegHandle, Key) -> ReturnValue
[page 266] Move to a key in the registry

� change key create(RegHandle, Key) -> ReturnValue
[page 266] Move to a key, create it if it is not there

� close(RegHandle)-> ReturnValue
[page 266] Close the registry.

� current key(RegHandle) -> ReturnValue
[page 266] Return the path to the current key.

� delete key(RegHandle) -> ReturnValue
[page 266] Delete the current key

� delete value(RegHandle, Name) -> ReturnValue
[page 267] Delete the named value on the current key.

41STDLIB

STDLIB Reference Manual

� expand(String) -> ExpandedString
[page 267] Expand a string with environment variables

� format error(ErrorId) -> ErrorString
[page 267] Convert an POSIX errorcode to a string

� open(OpenModeList)-> ReturnValue
[page 267] Open the registry for reading or writing

� set value(RegHandle, Name, Value) -> ReturnValue
[page 267] Set value at the current registry key with specified name.

� sub keys(RegHandle) -> ReturnValue
[page 268] Get subkeys to the current key.

� value(RegHandle, Name) -> ReturnValue
[page 268] Get the named value on the current key.

� values(RegHandle) -> ReturnValue
[page 268] Get all values on the current key.

42 STDLIB

STDLIB Reference Manual beam lib

beam lib
Erlang Module

beam lib provides an interface to files created by the BEAM compiler (“BEAM files”).
The format used, a variant of “EA IFF 1985” Standard for Interchange Format Files,
divides data into chunks.

Chunk data can be returned as binaries or as compound terms. Compound terms are
returned when chunks are referenced by names (atoms) rather than identifiers (strings).
The names recognized and the corresponding identifiers are abstract code (“Abst”),
attributes (“Attr”), exports (“ExpT”), labeled exports (“ExpT”), imports
(“ImpT”), locals (“LocT”), labeled locals (“LocT”), and atoms (“Atom”).

The syntax of the compound term (ChunkData) is as follows:

� ChunkData = fChunkId, binary()g | fabstract code, AbstractCodeg |
fattributes, [fAttribute, [AttributeValue]g]g | fexports,
[fFunction, Arityg]g | flabeled exports, [fFunction, Arity, Labelg]g
| fimports, [fModule, Function, Arityg]g | flocals, [fFunction,
Arityg]g]g | flabeled locals, [fFunction, Arity, Labelg]g]g | fatoms,
[finteger(), atom()g]g

� ChunkRef = ChunkId | ChunkName

� ChunkName = abstract code | attributes | exports | imports | locals

� ChunkId = string()

� AbstractCode = fAbstVersion, forms()g | no abstract code

� AbstVersion = atom()

� Attribute = atom()

� AttributeValue = term()

� Module = Function = atom()

� Arity = integer() >= 0

� Label = integer() >= 0

The list of attributes is sorted on Attribute, and each attribute name occurs once in
the list. The attribute values occur in the same order as on the file. The lists of functions
are also sorted. It is not checked that the forms conform to the abstract format
indicated by AbstVersion.

no abstract code means that the “Abst” chunk is present, but empty.

Each of the functions described below accept either a filename or a binary containing a
beam module.

43STDLIB

beam lib STDLIB Reference Manual

Exports

chunks(FileNameOrBinary, [ChunkRef]) -> fok, fModule, [ChunkData]gg | ferror, Module,
Reasong

Types:

� FileNameOrBinary = string() | atom() | binary()
� Reason = funknown chunk, FileName, atom()g | -see info/1-

The chunks/2 function reads chunk data for selected chunks. The order of the returned
list of chunk data is determined by the order of the list of chunks references; if each
chunk data were replaced by the tag, the result would be the given list.

version(FileNameOrBinary) -> fok, fModule, Versiongg | ferror, Module, Reasong

Types:

� FileNameOrBinary = string() | atom() | binary()
� Version = [term()]
� Reason = -see chunks/2-

The version/1 function returns the module version(s) found in a BEAM file.

info(FileNameOrBinary) -> [SourceRef, fmodule, Moduleg, fchunks, [ChunkInfo]g] |
ferror, Module, Reasong

Types:

� FileName = string() | atom()
� FileNameOrBinary = FileName | binary()
� SourceRef = ffile, FileNameg | fbinary, binary()g
� ChunkInfo = fChunkId, StartPosition, Sizeg
� StartPosition = integer() > 0
� Size = integer() >= 0
� Reason = fchunk too big, FileName, ChunkId, ChunkSize, FileSizeg |
finvalid beam file, FileName, FilePositiong | finvalid chunk, FileName, ChunkIdg |
fmissing chunk, FileName, ChunkIdg | fnot a beam file, FileNameg | ffile error,
FileName, FileErrorg

The info/1 function extracts some information about a BEAM file: the file name, the
module name, and for each chunk the identifier as well as the position and size in bytes
of the chunk data.

cmp(FileNameOrBinary, FileNameOrBinary) -> ok | ferror, Module, Reasong

Types:

� FileName = string() | atom()
� FileNameOrBinary = FileName | binary()
� Reason = fmodules different, Module, Moduleg | fchunks different, ChunkIdg |

-see info/1-

44 STDLIB

STDLIB Reference Manual beam lib

The cmp/2 function compares the contents of two BEAM files. If the module names are
the same, and the chunks with the identifiers “Code”, “ExpT”, “ImpT”, “StrT”, and
“Atom” have the same contents in both files, ok is returned. Otherwise an error message
is returned.

cmp dirs(Directory1, Directory2) -> fOnly1, Only2, Differentg | ferror, Module,
Reasong

Types:

� Directory1 = Directory2 = string() | atom()
� Different = [fFileName1, FileName2g]
� Only1 = Only2 = [FileName]
� FileName = FileName1 = FileName2 = string()
� Reason = -see info/1-

The cmp dirs/2 function compares the BEAM files in two directories. Only files with
extension “.beam” are compared. BEAM files that exist in directory Directory1
(Directory2) only are returned in Only1 (Only2). BEAM files that exist on both
directories but are considered different by cmp/2 are returned as pairs fFileName1,
FileName2g where FileName1 (FileName2) exists in directory Directory1
(Directory2).

diff dirs(Directory1, Directory2) -> ok | ferror, Module, Reasong

Types:

� Directory1 = Directory2 = string() | atom()
� Reason = -see info/1-

The diff dirs/2 function compares the BEAM files in two directories the way
cmp dirs/2 does, but names of files that exist in only one directory or are different are
presented on standard output.

strip(FileNameOrBinary) -> fok, fModule, FileNameOrBinarygg | ferror, Module, Reasong

Types:

� FileName = string() | atom()
� FileNameOrBinary = FileName | binary()
� Reason = -see info/1-

The strip/1 function removes all chunks from a BEAM file except those needed by the
loader. In particular, the abstract code is removed. The module name found in the file
and the file name, possibly with the “.beam” extension added, are returned.

strip files(Files) -> fok, [fModule, FileNameOrBinary]gg | ferror, Module, Reasong

Types:

� Files = [FileNameOrBinary]
� FileName = string() | atom()
� FileNameOrBinary = FileName | binary()
� Reason = -see info/1-

45STDLIB

beam lib STDLIB Reference Manual

The strip files/1 function removes all chunks except those needed by the loader
from BEAM files. In particular, the abstract code is removed. The returned list contains
one element for each given file name, ordered as the given list. The list element is a pair
of the module name found in the file and the file name, the latter possibly with the
“.beam” extension added.

strip release(Directory) -> fok, [fModule, FileName]gg | ferror, Module, Reasong

Types:

� Directory = string() | atom()
� FileName = string()
� Reason = -see info/1-

The strip release/1 function removes all chunks except those needed by the loader
from the BEAM files of a release. Directory should be the installation root directory.
For example, the current OTP release can be stripped with the call
beam lib:strip release(code:root dir()). The returned list contains module
names and file names of stripped files.

format error(Error) -> character list()

Given the error returned by any function in this module, the function format error
returns a descriptive string of the error in English. For file errors, the function
format error/1 in the file module is called.

46 STDLIB

STDLIB Reference Manual c

c
Erlang Module

The c module enables users to enter the short form of some commonly used commands.
These functions are are intended for interactive use in the Erlang shell.

Exports

bt(Pid) -> void()

Types:

� Pid = pid()

This function evaluates erlang:process display(Pid, backtrace).

c(File) -> CompileResult

This function is equivalent to:

compile:file(File,[report errors, report warnings])

c(File, Flags) -> CompileResult

Types:

� File = atom() | string()
� CompileResult = fok, ModuleNameg | error
� ModuleName = atom()
� Flags = [Flag]

This function calls the following function and then purges and loads the code for the
file:

compile:file(File, Flags ++ [report errors, report warnings])

If the module corresponding to File is being interpreted, then int:i is called with the
same arguments and the module is loaded into the interpreter. Note that int:i only
recognizes a subset of the options recognized by compile:file.

Extreme care should be exercised when using this command to change running code
which is executing. The expected result may not be obtained.

Refer to compiler manual pages for a description of the individual compiler flags.

cd(Dir) -> void()

Types:

� Dir = atom() | string()

47STDLIB

c STDLIB Reference Manual

This function changes the current working directory to Dir, and then prints the new
working directory.

flush() -> void()

This function flushes all messages in the shell message queue.

help() -> void()

This function displays help about the shell and about the command interface module.

i() -> void()

This function provides information about the current state of the system. This call uses
the BIFs processes() and process info/1 to examine the current state of the system.
(The code is a good introduction to these two BIFs).

i(X, Y, Z) -> void()

Types:

� X = Y = Z = int()

This function evaluates process info(pid(X, Y, Z)).

l(Module) -> void()

Types:

� Module = atom() | string()

This function evaluates code:purge(Module) followed by code:load module(Module).
It reloads the module.

lc(ListOfFiles) -> Result

Types:

� ListOfFiles = [File]
� File = atom() | string()
� Result = [CompileResult]
� CompileResult = fok, ModuleNameg | error
� ModuleName = atom()

This function compiles several files by calling c(File) for each file in ListOfFiles.

ls() -> void()

This function lists all files in the current directory.

ls(Dir) -> void()

Types:

� Dir = atom() | string()

This function lists all files in the directory Dir.

m() -> void()

48 STDLIB

STDLIB Reference Manual c

This function lists the modules which have been loaded and the files from which they
have been loaded.

m(Module) -> void()

Types:

� Module = atom()

This function lists information about Module.

memory() -> TupleList

Types:

� TupleList = [TwoTuple]
� TwoTuple = fatom(), int()g

A list of tuples is returned. Each tuple has two elements. The first element is an atom
describing memory type. The second element is memory size in bytes. A description of
each tuple follows:

total The total amount of allocated memory. total is the sum of processes and
system.
Observe that this is not a complete list of allocated memory; but, it is almost
complete.

processes The total amount of memory allocated by the processes.

system The total amount of memory allocated by the system. Memory allocated by
processes is not included.
Observe that this is not a complete list of memory allocated by the system; but, it
is almost complete.

atom The total amount of memory allocated for atoms.
This memory is part of the memory presented as system memory.

atom used The total amount of memory actually used for atoms.
This memory is part of the memory presented as atom memory.

binary The total amount of memory allocated for binaries.
This memory is part of the memory presented as system memory.

code The total amount of memory allocated for code.
This memory is part of the memory presented as system memory.

ets The total amount of memory allocated for ets tables.
This memory is part of the memory presented as system memory.

maximum The maximum total amount of memory allocated since the Erlang runtime
system was started.
This tuple is only present when the Erlang runtime system is run instrumented.

A process executing this function may be preempted by other processes; therefore, the
returned information may not be a consistent snapshot of the memory allocation state.

The total and system values are more accurate when the Erlang runtime system is run
instrumented.

More tuples in the returned list may be added in the future.

memory(MemoryType) -> int()

49STDLIB

c STDLIB Reference Manual

Types:

� MemoryType = atom()

MemoryType is one of the following atoms: total, processes, system, atom,
atom used, binary, code, ets, or maximum. These atoms correspond to the atoms
described for memory/0 above. The amount of memory in bytes that corresponds to the
argument is returned.

A process executing this function may be preempted by other processes; therefore, the
returned information may not be a consistent snapshot of the memory allocation state.

The total and system values are more accurate when the Erlang runtime system is run
instrumented.

More arguments may be added in the future.

Failure: badarg if MemoryType isn’t one of the atoms listed above, or if the Erlang
runtime system isn’t run instrumented and MemoryType is maximum.

nc(File) -> void()

Types:

� File = atom() | string()

This function compiles File and loads it on all nodes in an Erlang nodes network.

nc(File, Flags) -> void()

Types:

� File = atom() | string()
� Flags = [Flag]

This function compiles File with the additional compiler flags Flags and loads it on all
nodes in an Erlang nodes network. Refer to the compile manual pages for a description
of Flags.

ni() -> void()

This function does the same as i(), but for all nodes in the network.

nl(Module) -> void()

Types:

� Module = atom()

This function loads Module on all nodes in an Erlang nodes network.

nregs() -> void()

This function is the same as regs(), but on all nodes in the system.

pid(X, Y, Z) -> pid()

Types:

� X = Y = Z = int()

This function converts the integers X, Y, and Z to the Pid <X.Y.Z>. It saves typing and
the use of list to pid/1. This function should only be used when debugging.

50 STDLIB

STDLIB Reference Manual c

pwd() -> void()

This function prints the current working directory.

q() -> void()

This function is shorthand for init:stop(), i.e., it causes the node to stop in a
controlled fashion.

regs() -> void()

This function displays formatted information about all registered processes in the
system.

xm(ModSpec) -> void()

Types:

� ModSpec = Module | File
� Module = atom()
� File = string()

This function finds undefined functions and unused functions in a module by calling
xref:m/1.

zi() -> void()

This function works like i(), but additionally displays information about zombie
processes, i.e., processes which have exited, but which are still kept in the system to be
inspected.

See Also

instrument(3)

51STDLIB

calendar STDLIB Reference Manual

calendar
Erlang Module

This module provides computation of local and universal time, day-of-the-week, and
several time conversion functions.

Time is local when it is adjusted in accordance with the current time zone and daylight
saving. Time is universal when it reflects the time at longitude zero, without any
adjustment for daylight saving. Universal Coordinated Time (UTC) time is also called
Greenwich Mean Time (GMT).

The time functions local time/0 and universal time/0 provided in this module both
return date and time. The reason for this is that separate functions for date and time
may result in a date/time combination which is displaced by 24 hours. This happens if
one of the functions is called before midnight, and the other after midnight. This
problem also applies to the Erlang BIFs date/0 and time/0, and their use is strongly
discouraged if a reliable date/time stamp is required.

All dates conform to the Gregorian calendar. This calendar was introduced by Pope
Gregory XIII in 1582 and was used in all Catholic countries from this year. Protestant
parts of Germany and the Netherlands adopted it in 1698, England followed in 1752,
and Russia in 1918 (the October revolution of 1917 took place in November according
to the Gregorian calendar).

The Gregorian calendar in this module is extended back to year 0. For a given date, the
gregorian days is the number of days up to and including the date specified. Similarly,
the gregorian seconds for a given date and time, is the the number of seconds up to and
including the specified date and time.

For computing differences between epochs in time, use the functions counting
gregorian days or seconds. If epochs are given as local time, they must be converted to
universal time, in order to get the correct value of the elapsed time between epochs.
Use of the function time difference/2 is discouraged.

Exports

date to gregorian days(Year, Month, Day) -> Days

date to gregorian days(Date) -> Days

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = Days = int()

This function computes the number of gregorian days starting with year 0 and ending at
the given date.

datetime to gregorian seconds(DateTime) -> Days

52 STDLIB

STDLIB Reference Manual calendar

Types:

� DateTime = fdate(), time()g
� date() = fYear, Month, Dayg
� time() = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = Days = int()

This function computes the number of gregorian seconds starting with year 0 and
ending at the given date and time.

day of the week(Date) -> DayNumber

day of the week(Year, Month, Day) -> DayNumber

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = DayNumber = int()

This function computes the day of the week given Year, Month and Day. The return
value denotes the day of the week as follows:

Monday = 1, Tuesday = 2, ..., Sunday = 7

Year cannot be abbreviated and a value of 93 denotes the year 93, and not the year
1993. Month is the month number with January = 1. Day is an integer in the range 1 and
the number of days in the month Month of the year Year.

gregorian days to date(Days) -> Date

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = Days = int()

This function computes the date given the number of gregorian days.

gregorian seconds to datetime(Secs) -> DateTime

Types:

� DateTime = fdate(), time()g
� date() = fYear, Month, Dayg
� time() = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = Days = int()

This function computes the date and time from the given number of gregorian seconds.

is leap year(Year) -> bool()

Types:

� Year = int()

This function checks if a year is a leap year.

last day of the month(Year, Month) -> int()

Types:

� Year = Month = int()

53STDLIB

calendar STDLIB Reference Manual

This function computes the number of days in a month.

local time() -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function returns the local time reported by the underlying operating system.

local time to universal time(fDate, Timeg) -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function converts from local time to Universal Coordinated Time (UTC). Date
must refer to a local date after Jan 1, 1970.

now to local time(Now) -> fDate, Timeg

Types:

� Now = fMegaSecs, Secs, MicroSecsg
� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� MegaSecs = Secs = MilliSecs = int()
� Year = Month = Day = Hour = Minute = Second = int()

This function returns local date and time converted from the return value from
erlang:now().

now to universal time(Now) -> fDate, Timeg

now to datetime(Now) -> fDate, Timeg

Types:

� Now = fMegaSecs, Secs, MicroSecsg
� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� MegaSecs = Secs = MilliSecs = int()
� Year = Month = Day = Hour = Minute = Second = int()

This function returns Universal Coordinated Time (UTC) converted from the return
value from erlang:now().

seconds to daystime(Secs) -> fDays, Timeg

Types:

� Time() = fHour, Minute, Secondg
� Hour = Minute = Second = Days = int()

54 STDLIB

STDLIB Reference Manual calendar

This function transforms a given number of seconds into days, hours, minutes, and
seconds. The Time part is always non-negative, but Days is negative if the argument
Secs is.

seconds to time(Secs) -> Time

Types:

� Time() = fHour, Minute, Secondg
� Hour = Minute = Second = Secs = int()

This function computes the time from the given number of seconds. Secs must be less
than the number of seconds per day.

time difference(T1, T2) -> Tdiff

Types:

� T1 = T2 = fDate, Timeg
� Tdiff = fDay, fHour, Minute, Secondgg
� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function returns the difference between two fDate, Timeg structures. T2 should
refer to an epoch later than T1.

This function is obsolete. Use the conversion functions for gregorian days and seconds
instead.

time to secnds(Time) -> Secs

Types:

� Time() = fHour, Minute, Secondg
� Hour = Minute = Second = Secs = int()

This function computes the number of seconds since midnight up to the specified time.

universal time() -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

This function returns the Universal Coordinated Time (UTC) reported by the
underlying operating system. Local time is returned if universal time is not available.

universal time to local time(fDate, Timeg) -> fDate, Timeg

Types:

� Date = fYear, Month, Dayg
� Time = fHour, Minute, Secondg
� Year = Month = Day = Hour = Minute = Second = int()

55STDLIB

calendar STDLIB Reference Manual

This function converts from Universal Coordinated Time (UTC) to local time. Date
must refer to a date after Jan 1, 1970.

valid date(Date) -> bool()

valid date(Year, Month, Day) -> bool()

Types:

� Date = fYear, Month, Dayg
� Year = Month = Day = int()

This function checks if a date is a valid.

Leap Years

The notion that every fourth year is a leap year is not completely true. By the Gregorian
rule, a year Y is a leap year if either of the following rules is valid:

� Y is divisible by 4, but not by 100; or

� Y is divisible by 400.

Accordingly, 1996 is a leap year, 1900 is not, but 2000 is.

Date and Time Source

Local time is obtained from the Erlang BIF localtime/0. Universal time is computed
from the BIF universaltime/0.

The following facts apply:

� there are 86400 seconds in a day

� there are 365 days in an ordinary year

� there are 366 days in a leap year

� there are 1461 days in a 4 year period

� there are 36524 days in a 100 year period

� there are 146097 days in a 400 year period

� there are 719528 days between Jan 1, 0 and Jan 1, 1970.

56 STDLIB

STDLIB Reference Manual dets

dets
Erlang Module

The module dets provides a term storage on file. The stored terms, in this module
called objects, are tuples such that one element is defined to be the key. A Dets table is a
collection of objects with the key at the same position stored on a file.

Dets is used by the Mnesia application, and is provided as is for users who are interested
in an efficient storage of Erlang terms on disk only. Many applications just need to store
some terms in a file. Mnesia adds transactions, queries, and distribution.

There are three types of Dets tables: set, bag and duplicate bag. A table of type set has
at most one object with a given key. If an object with a key already present in the table
is inserted, the existing object is overwritten by the new object. A table of type bag has
zero or more different objects with a given key. A table of type duplicate bag has zero or
more possibly equal objects with a given key.

Dets tables must be opened before they can be updated or read, and when finished they
must be properly closed. If a table has not been properly closed, Dets will automatically
repair the table. This can take a substantial time if the table is large. A Dets table is
closed when the process which opened the table terminates. If several Erlang processes
(users) open the same Dets table, they will share the table. The table is properly closed
when all users have either terminated or closed the table. Dets tables are not properly
closed if the Erlang runtime system is terminated abnormally.

Note:
A ^C command abnormally terminates an Erlang runtime system in a Unix
environment with a break-handler.

Since all operations performed by Dets are disk operations, it is important to realize that
a single look-up operation involves a series of disk seek and read operations. For this
reason, the Dets functions are much slower than the corresponding Ets functions,
although Dets exports a similar interface.

Dets organizes data as a linear hash list and the hash list grows gracefully as more data is
inserted into the table. Space management on the file is performed by what is called a
buddy system. The current implementation keeps the entire buddy system in RAM,
which implies that if the table gets heavily fragmented, quite some memory can be used
up. The only way to defragment a table is to close it and then open it again with the
repair option set to force.

It is worth noting that the ordered set type present in Ets is not yet implemented by
Dets, neither is the limited support for concurrent updates which makes a sequence of
first and next calls safe to use on fixed Ets tables. Both these features will be
implemented by Dets in a future release of Erlang/OTP. Until then, the Mnesia
application (or some user implemented method for locking) has to be used to

57STDLIB

dets STDLIB Reference Manual

implement safe concurrency. Currently, no library of Erlang/OTP has support for
ordered disk based term storage.

Two versions of the format used for storing objects on file are supported by Dets. The
first version, 8, is the format always used for tables created by OTP R7 and earlier. The
second version, 9, is the default version of tables created by OTP R8 (and later OTP
releases). OTP R8 can create version 8 tables, and convert version 8 tables to version 9,
and vice versa, upon request.

All Dets functions return ferror, Reasong if an error occurs (first/1 and next/2 are
exceptions, they exit the process with the error tuple). If given badly formed
arguments, all functions exit the process with a badarg message.

Types

access() = read | read write
auto save() = infinity | int()
bindings cont() = tuple()
bool() = true | false
file() = string()
int() = integer() >= 0
keypos() = integer() >= 1
name() = atom() | ref()
no slots() = integer() >= 0 | default
object() = tuple()
object cont() = tuple()
select cont() = tuple()
type() = bag | duplicate bag | set
version() = 8 | 9 | default

Exports

all() -> [Name]

Types:

� Name = name()

Returns a list of the names of all open tables on this node.

bchunk(Name, Continuation) -> fContinuation2, Datag | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� Continuation = start | cont()
� Continuation2 = cont()
� Data = binary() | tuple()

58 STDLIB

STDLIB Reference Manual dets

Returns a list of objects stored in a table. The exact representation of the returned
objects is not public. The lists of data can be used for initializing a table using the
bchunk option of the init table/3 function. The Mnesia application uses this function
for copying open tables.

Unless the table is protected using safe fixtable/2, calls to bchunk/2 may not work
as expected if concurrent updates are made to the table.

The first time bchunk/2 is called, an initial continuation, the atom start, must be
provided.

The bchunk/2 function returns a tuple fContinuation2, Datag, where Data is a list of
objects. Continuation2 is another continuation which is to be passed on to a
subsequent call to bchunk/2. With a series of calls to bchunk/2 it is possible to extract
all objects of the table.

bchunk/2 returns ’$end of table’ when all objects have been returned, or ferror,
Reasong if an error occurs.

close(Name) -> ok | ferror, Reasong

Types:

� Name = name()

Closes a table. Only processes that have opened a table are allowed to close it.

All open tables must be closed before the system is stopped. If an attempt is made to
open a table which has not been properly closed, Dets automatically tries to repair the
table.

delete(Name, Key) -> ok | ferror, Reasong

Types:

� Name = name()

Deletes all objects with the key Key from the table Name.

delete all objects(Name) -> ok | ferror, Reasong

Types:

� Name = name()

Deletes all objects from a table in almost constant time. However, if the table if fixed,
delete all objects(T) is equivalent to match delete(T, ’ ’).

delete object(Name, Object) -> ok | ferror, Reasong

Types:

� Name = name()
� Object = object()

Deletes all instances of a given object from a table. If a table is of type bag or
duplicate bag, the delete/2 function cannot be used to delete only some of the
objects with a given key. This function makes this possible.

first(Name) -> Key | ’$end of table’

Types:

59STDLIB

dets STDLIB Reference Manual

� Key = term()
� Name = name()

Returns the first key stored in the table Name according to the table’s internal order, or
’$end of table’ if the table is empty.

Unless the table is protected using safe fixtable/2, subsequent calls to next/2 may
not work as expected if concurrent updates are made to the table.

Should an error occur, the process is exited with an error tuple ferror, Reasong. The
reason for not returning the error tuple is that it cannot be distinguished from a key.

There are two reasons why first/1 and next/2 should not be used: they are not very
efficient, and they prevent the use of the key ’$end of table’ since this atom is used
to indicate the end of the table. If possible, the match, match object, and select
functions should be used for traversing tables.

foldl(Function, Acc0, Name) -> Acc1 | ferror, Reasong

Types:

� Function = fun(Object, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Name = name()
� Object = object()

Calls Function on successive elements of the table Name together with an extra
argument AccIn. The order in which the elements of the table are traversed is
unspecified. Function must return a new accumulator which is passed to the next call.
Acc0 is returned if the table is empty.

foldr(Function, Acc0, Name) -> Acc1 | ferror, Reasong

Types:

� Function = fun(Object, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Name = name()
� Object = object()

Calls Function on successive elements of the table Name together with an extra
argument AccIn. The order in which the elements of the table are traversed is
unspecified. Function must return a new accumulator which is passed to the next call.
Acc0 is returned if the table is empty.

from ets(Name, EtsTab) -> ok | ferror, Reasong

Types:

� Name = name()
� EtsTab = -see ets(3)-

Replaces the objects of the table Name with the objects of the Ets table EtsTab. The
order in which the objects are inserted is not specified. Since ets:safe fixtable/2 is
called, the Ets table must be public or owned by the calling process.

info(Name) -> InfoList | undefined

Types:

60 STDLIB

STDLIB Reference Manual dets

� Name = name()
� InfoList = [fItem, Valueg]

Returns information about the table Name as a list of fItem, Valueg tuples:

� ffile size, int()g, the size of the file in bytes.

� ffilename, file()g, the name of the file where objects are stored.

� fkeypos, keypos()g, the position of the key.

� fsize, int()g, the number of objects stored in the table.

� ftype, type()g, the type of the table.

info(Name, Item) -> Value | undefined

Types:

� Name = name()

Returns the information associated with Item for the table Name. In addition to the
fItem, Valueg pairs defined for info/1, the following items are allowed:

� faccess, access()g, the access mode.

� fauto save, auto save()g, the auto save interval.

� fhash, Hashg. Describes which BIF is used to calculate the hash values of the
objects stored in the Dets table. Possible values of Hash are hash, which implies
that the erlang:hash/2 BIF is used, and phash, which implies that the
erlang:phash/2 BIF is used.

� fmemory, int()g, the size of the file in bytes. The same value is associated with
the item file size.

� fno keys, int()g, the number of different keys stored in the table. Only
available for version 9 tables.

� fno objects, int()g, the number of objects stored in the table.

� fno slots, fMin, Used, Maxgg, the number of slots of the table. Min is the
minimum number of slots, Used is the number of currently used slots, and Max is
the maximum number of slots. Only available for version 9 tables.

� fowner, pid()g, the pid of the process that handles requests to the Dets table.

� fram file, bool()g, whether the table is kept in RAM.

� fsafe fixed, SafeFixedg. If the table is fixed, SafeFixed is a tuple fFixedAtTime,
[fPid,RefCountg]g. FixedAtTime is the time when the table was first fixed, and
Pid is the pid of the process that fixes the table RefCount times. There may be any
number of processes in the list. If the table is not fixed, SafeFixed is the atom
false.

� fversion, int()g, the version of the format of the table.

init table(Name, InitFun [, Options]) -> ok | ferror, Reasong

Types:

� Name = atom()
� InitFun = fun(Arg) -> Res
� Arg = read | close
� Res = end of input | f[object()], InitFung | fData, InitFung | term()

61STDLIB

dets STDLIB Reference Manual

� Data = binary() | tuple()

Replaces the existing objects of the table Name with objects created by calling the input
function InitFun, see below. The reason for using this function rather than calling
insert/2 is that of efficiency. It should be noted that the input functions are called by
the process that handles requests to the Dets table, not by the calling process.

When called with the argument read the function InitFun is assumed to return
end of input when there is no more input, or fObjects, Fung, where Objects is a list
of objects and Fun is a new input function. Any other value Value is returned as an error
ferror, finit fun, Valuegg. Each input function will be called exactly once, and
should an error occur, the last function is called with the argument close, the reply of
which is ignored.

If the type of the table is set and there is more than one object with a given key, one of
the objects is chosen. This is not necessarily the last object with the given key in the
sequence of objects returned by the input functions. Extra objects should be avoided, or
the file will be unnecessarily fragmented. This holds also for duplicated objects stored in
tables of type duplicate bag.

It is important that the table has a sufficient number of slots for the objects. If not, the
hash list will start to grow when init table/2 returns which will significantly slow
down access to the table for a period of time. The minimum number of slots is set by
the open file/2 option min no slots and returned by the info/2 item no slots. See
also the min no slots option below.

The Options argument is a list of fKey, Valg tuples where the following values are
allowed:

� fmin no slots, no slots()g. Specifies the estimated number of different keys
that will be stored in the table. The open file option with the same name is
ignored unless the table is created, and in that case performance can be enhanced
by supplying an estimate when initializing the table.

� fformat, Formatg. Specifies the format of the objects returned by the function
InitFun. If Format is term (the default), InitFun is assumed to return a list of
tuples. If Format is bchunk, InitFun is assumed to return Data as returned by
bchunk/2. This option overrides the min no slots option.

insert(Name, Objects) -> ok | ferror, Reasong

Types:

� Name = name()
� Objects = object() | [object()]

Inserts one or more objects into the table Name. If there already exists an object with the
same key as some of the given objects and the table type is set, the old object will be
replaced.

is dets file(FileName) -> Bool | ferror, Reasong

Types:

� FileName = file()
� Bool = bool()

Returns true if the file FileName is a Dets table, false otherwise.

62 STDLIB

STDLIB Reference Manual dets

lookup(Name, Key) -> [Object] | ferror, Reasong

Types:

� Key = term()
� Name = name()
� Object = object()

Returns a list of all objects with the key Key stored in the table Name. For example:

2> dets:open file(abc, [ftype, bagg]).
fok,abcg
3> dets:insert(abc, f1,2,3g).
ok
4> dets:insert(abc, f1,3,4g).
ok
5> dets:lookup(abc, 1).
[f1,2,3g,f1,3,4g]

If the table is of type set, the function returns either the empty list or a list with one
object, as there cannot be more than one object with a given key. If the table is of type
bag or duplicate bag, the function returns a list of arbitrary length.

Note that the order of objects returned is unspecified. In particular, the order in which
objects were inserted is not reflected.

match(Continuation) -> f[Match], Continuation2g | ’$end of table’ | ferror, Reasong

Types:

� Continuation = Continuation2 = bindings cont()
� Match = [term()]

Matches some objects stored in a table and returns a list of the bindings that match a
given pattern in some unspecified order. The table, the pattern, and the number of
objects that are matched are all defined by Continuation, which has been returned by
a prior call to match/1 or match/3.

When all objects of the table have been matched, ’$end of table’ is returned.

match(Name, Pattern) -> [Match] | ferror, Reasong

Types:

� Name = name()
� Pattern = tuple()
� Match = [term()]

Returns for each object of the table Name that matches Pattern a list of bindings in
some unspecified order. See ets(3) [page 104] for a description of patterns. If the
keypos’th element of Pattern is unbound, all objects of the table are matched. If the
keypos’th element is bound, only the objects with the right key are matched.

match(Name, Pattern, N) -> f[Match], Continuationg | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� Pattern = tuple()

63STDLIB

dets STDLIB Reference Manual

� N = default | int()
� Match = [term()]
� Continuation = bindings cont()

Matches some or all objects of the table Name and returns a list of the bindings that
match Pattern in some unspecified order. See ets(3) [page 104] for a description of
patterns.

A tuple of the bindings and a continuation is returned, unless the table is empty, in
which case ’$end of table’ is returned. The continuation is to be used when
matching further objects by calling match/1.

If the keypos’th element of Pattern is bound, all objects of the table are matched. If
the keypos’th element is unbound, all objects of the table are matched, N objects at a
time. The default, indicated by giving N the value default, is to let the number of
objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects
with the same key are always matched at the same time which implies that more than
N objects may sometimes be matched.

The table should always be protected using safe fixtable/2 before calling match/3, or
errors may occur when calling match/1.

match delete(Name, Pattern) -> N | ferror, Reasong

Types:

� Name = name()
� N = int()
� Pattern = tuple()

Deletes all objects that match Pattern from the table Name, and returns the number of
deleted objects. See ets(3) [page 104] for a description of patterns.

If the keypos’th element of Pattern is bound, only the objects with the right key are
matched.

match object(Continuation) -> f[Object], Continuation2g | ’$end of table’ | ferror,
Reasong

Types:

� Continuation = Continuation2 = object cont()
� Object = object()

Returns a list of some objects stored in a table that match a given pattern in some
unspecified order. The table, the pattern, and the number of objects that are matched
are all defined by Continuation, which has been returned by a prior call to
match object/1 or match object/3.

When all objects of the table have been matched, ’$end of table’ is returned.

match object(Name, Pattern) -> [Object] | ferror, Reasong

Types:

� Name = name()
� Pattern = tuple()
� Object = object()

64 STDLIB

STDLIB Reference Manual dets

Returns a list of all objects of the table Name that match Pattern in some unspecified
order. See ets(3) [page 104] for a description of patterns.

If the keypos’th element of Pattern is unbound, all objects of the table are matched. If
the keypos’th element of Pattern is bound, only the objects with the right key are
matched.

Using the match object functions for traversing all objects of a table is more efficient
than calling first/1 and next/2 or slot/2.

match object(Name, Pattern, N) -> f[Object], Continuationg | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� Pattern = tuple()
� N = default | int()
� Object = object()
� Continuation = object cont()

Matches some or all objects stored in the table Name and returns a list of the objects that
match Pattern in some unspecified order. See ets(3) [page 104] for a description of
patterns.

A list of objects and a continuation is returned, unless the table is empty, in which case
’$end of table’ is returned. The continuation is to be used when matching further
objects by calling match object/1.

If the keypos’th element of Pattern is bound, all objects of the table are matched. If
the keypos’th element is unbound, all objects of the table are matched, N objects at a
time. The default, indicated by giving N the value default, is to let the number of
objects vary depending on the sizes of the objects. If Name is a version 9 table, all
matching objects with the same key are always returned in the same reply which
implies that more than N objects may sometimes be returned.

The table should always be protected using safe fixtable/2 before calling
match object/3, or errors may occur when calling match object/1.

member(Name, Key) -> Bool | ferror, Reasong

Types:

� Name = name()
� Key = term()
� Bool = bool()

Works like lookup/2, but does not return the objects. The function returns true if one
or more elements of the table has the key Key, false otherwise.

next(Name, Key1) -> Key2 | ’$end of table’

Types:

� Name = name()
� Key1 = Key2 = term()

65STDLIB

dets STDLIB Reference Manual

Returns the key following Key1 in the table Name according to the table’s internal order,
or ’$end of table’ if there is no next key.

Should an error occur, the process is exited with an error tuple ferror, Reasong.

Use first/1 to find the first key in the table.

open file(Filename) -> fok, Referenceg | ferror, Reasong

Types:

� FileName = file()
� Reference = ref()

Opens an existing table. If the table has not been properly closed, the error ferror,
need repairg is returned. The returned reference is to be used as the name of the
table. This function is most useful for debugging purposes.

open file(Name, Args) -> fok, Nameg | ferror, Reasong

Types:

� Name = atom()

Opens a table. An empty Dets table is created if no file exists.

The atom Name is the name of the table. The table name must be provided in all
subsequent operations on the table. The name can be used by other processes as well,
and several process can share one table.

If two processes open the same table by giving the same name and arguments, then the
table will have two users. If one user closes the table, it still remains open until the
second user closes the table.

The Args argument is a list of fKey, Valg tuples where the following values are
allowed:

� faccess, access()g. It is possible to open existing tables in read-only mode. A
table which is opened in read-only mode is not subjected to the automatic file
reparation algorithm if it is later opened after a crash. The default value is
read write.

� fauto save, auto save()g, the auto save interval. If the interval is an integer
Time, the table is flushed to disk whenever it is not accessed for Time milliseconds.
A table that has been flushed will require no reparation when reopened after an
uncontrolled emulator halt. If the interval is the atom infinity, auto save is
disabled. The default value is 180000 (3 minutes).

� festimated no objects, int()g. Equivalent to the min no slots option.

� ffile, file()g, the name of the file to be opened. The default value is the name
of the table.

� fmax no slots, no slots()g, the maximum number of slots that will be used.
The default value is 2 M, and the maximal value is 32 M. Note that a higher value
may increase the fragmentation of the table, and conversely, that a smaller value
may decrease the fragmentation, at the expense of execution time. Only available
for version 9 tables.

� fmin no slots, no slots()g. Application performance can be enhanced with
this flag by specifying, when the table is created, the estimated number of different
keys that will be stored in the table. The default value as well as the minimum
value is 256.

66 STDLIB

STDLIB Reference Manual dets

� fkeypos, keypos()g, the position of the element of each object to be used as key.
The default value is 1. The ability to explicitly state the key position is most
convenient when we want to store Erlang records in which the first position of the
record is the name of the record type.

� fram file, bool()g, whether the table is to be kept in RAM. Keeping the table in
RAM may sound like an anomaly, but can enhance the performance of applications
which open a table, insert a set of objects, and then close the table. When the table
is closed, its contents are written to the disk file. The default value is false.

� frepair, Valueg. Value can be either a bool() or the atom force. The flag
specifies whether the Dets server should invoke the automatic file reparation
algorithm. The default is true. If false is specified, there is no attempt to repair
the file and ferror, need repairg is returned if the table needs to be repaired.
The value force means that a reparation will take place even if the table has been
properly closed. This is how to convert tables created by older versions of STDLIB.
An example is tables hashed with the deprecated erlang:hash/2 BIF. Tables
created with Dets from a STDLIB version of 1.8.2 and later use the new
erlang:phash/2 function, which is preferred.

� ftype, type()g, the type of the table. The default value is set.
� fversion, version()g, the version of the format used for the table. The default

value is 9. Tables on the format used before OTP R8 can be created by giving the
value 8. A version 8 table can be converted to a version 9 table by giving the
options fversion,9g and frepair,forceg.

pid2name(Pid) -> fok, Nameg | undefined

Types:

� Name = name()
� Pid = pid()

Returns the name of the table given the pid of a process that handles requests to a table,
or undefined if there is no such table.

This function is meant to be used for debugging only.

safe fixtable(Name, Fix)

Types:

� Name = name()
� Fix = bool()

If Fix is true, the table Name is fixed (once more) by the calling process, otherwise the
table is released. The table is also released when a fixing process terminates.

If several processes fix a table, the table will remain fixed until all processes have
released it or terminated. A reference counter is kept on a per process basis, and N
consecutive fixes require N releases to release the table.

It is not guaranteed that calls to first/1, next/2, select and match functions work as
expected even if the table has been fixed; the limited support for concurrency
implemented in Ets has not yet been implementeded in Dets. Fixing a table currently
only disables resizing of the hash list of the table.

If objects have been added while the table was fixed, the hash list will start to grow
when the table is released which will significantly slow down access to the table for a
period of time.

67STDLIB

dets STDLIB Reference Manual

select(Continuation) -> fSelection, Continuation2g | ’$end of table’ | ferror,
Reasong

Types:

� Continuation = Continuation2 = select cont()
� Selection = [term()]

Returns the results of applying a match specification to some objects stored in a table.
The table, the match specification, and the number of objects that are matched are all
defined by Continuation, which has been returned by a prior call to select/1 or
select/3.

When all objects of the table have been matched, ’$end of table’ is returned.

select(Name, MatchSpec) -> Selection | ferror, Reasong

Types:

� Name = name()
� MatchSpec = match spec()
� Selection = [term()]

Returns the results of applying the match specification MatchSpec to all or some objects
stored in the table Name. The order of the objects is not specified. See the ERTS User’s
Guide for a description of match specifications.

If the keypos’th element of MatchSpec is unbound, the match specification is applied to
all objects of the table. If the keypos’th element is bound, the match specification is
applied to the objects with the right key(s) only.

Using the select functions for traversing all objects of a table is more efficient than
calling first/1 and next/2 or slot/2.

select(Name, MatchSpec, N) -> fSelection, Continuationg | ’$end of table’ | ferror,
Reasong

Types:

� Name = name()
� MatchSpec = match spec()
� N = default | int()
� Selection = [term()]
� Continuation = select cont()

Returns the results of applying the match specification MatchSpec to some or all objects
stored in the table Name. The order of the objects is not specified. See the ERTS User’s
Guide for a description of match specifications.

A tuple of the results of applying the match specification and a continuation is returned,
unless the table is empty, in which case ’$end of table’ is returned. The continuation
is to be used when matching further objects by calling select/1.

If the keypos’th element of MatchSpec is bound, the match specification is applied to all
objects of the table with the right key(s). If the keypos’th element of MatchSpec is
unbound, the match specification is applied to all objects of the table, N objects at a
time. The default, indicated by giving N the value default, is to let the number of
objects vary depending on the sizes of the objects. If Name is a version 9 table, all objects
with the same key are always handled at the same time which implies that the match
specification may be applied to more than N objects.

68 STDLIB

STDLIB Reference Manual dets

The table should always be protected using safe fixtable/2 before calling select/3,
or errors may occur when calling select/1.

select delete(Name, MatchSpec) -> N | ferror, Reasong

Types:

� Name = name()
� MatchSpec = match spec()
� N = int()

Deletes each object from the table Name such that applying the match specification
MatchSpec to the object returns the value true. See the ERTS User’s Guide for a
description of match specifications. Returns the number of deleted objects.

If the keypos’th element of MatchSpec is bound, the match specification is applied to
the objects with the right key(s) only.

slot(Name, I) -> ’$end of table’ | [Object] | ferror, Reasong

Types:

� Name = name()
� I = int()
� Object = object()

The objects of a table are distributed among slots, starting with slot 0 and ending with
slot n. This function returns the list of objects associated with slot I. If I is greater than
n ’$end of table’ is returned.

sync(Name) -> ok | ferror, Reasong

Types:

� Name = name()

Ensures that all updates made to the table Name are written to disk. This also applies to
tables which have been opened with the ram file flag set to true. In this case, the
contents of the RAM file are flushed to disk.

Note that the space management data structures kept in RAM, the buddy system, is
also written to the disk. This may take some time if the table is fragmented.

to ets(Name, EtsTab) -> EtsTab | ferror, Reasong

Types:

� Name = name()
� EtsTab = -see ets(3)-

Inserts the objects of the Dets table Name into the Ets table EtsTab. The order in which
the objects are inserted is not specified. The existing objects of the Ets table are kept
unless overwritten.

traverse(Name, Fun) -> Return | ferror, Reasong

Types:

� Fun = fun(Object) -> FunReturn
� FunReturn = continue | fcontinue, Valg | fdone, Valueg

69STDLIB

dets STDLIB Reference Manual

� Val = Value = term()
� Name = name()
� Object = object()
� Return = [term()]

Applies Fun to each object stored in the table Name in some unspecified order. Different
actions are taken depending on the return value of Fun. The following Fun return values
are allowed:

continue Continue to perform the traversal. For example, the following function can
be used to print out the contents of a table:

fun(X) -> io:format("~p~n", [X]), continue end.

fcontinue, Valg Continue the traversal and accumulate Val. The following function
is supplied in order to collect all objects of a table in a list:

fun(X) -> fcontinue, Xg end.

fdone, Valueg Terminate the traversal and return [Value | Acc].

Any other value returned by Fun terminates the traversal and is immediately returned.

update counter(Name, Key, Increment) -> Result

Types:

� Name = name()
� Key = term()
� Increment = fPos, Incrg | Incr
� Pos = Incr = Result = integer()

Updates the object with key Key stored in the table Name of type set by adding Incr to
the element at the Pos:th position. The new counter value is returned. If no position is
specified, the element directly following the key is updated.

This functions provides a way of updating a counter, without having to look up an
object, update the object by incrementing an element and insert the resulting object
into the table again.

See Also

ets(3) [page 104], mnesia(3)

70 STDLIB

STDLIB Reference Manual dict

dict
Erlang Module

Dict implements a Key - Value dictionary. The representation of a dictionary is not
defined.

Exports

append(Key, Value, Dict1) -> Dict2

Types:

� Key = Value = term()
� Dict1 = Dict2 = dictionary()

This function appends a new Value to the current list of values associated with Key. An
exception is generated if the initial value associated with Key is not a list of values.

append list(Key, ValList, Dict1) -> Dict2

Types:

� ValList = [Value]
� Key = Value = [term()]
� Dict1 = Dict2 = dictionary()

This function appends a list of values ValList to the current list of values associated
with Key. An exception is generated if the initial value associated with Key is not a list
of values.

erase(Key, Dict1) -> Dict2

Types:

� Key = term()
� Dict1 = Dict2 = dictionary()

This function erases all items with a given key from a dictionary.

fetch(Key, Dict) -> Value

Types:

� Key = Value = term()
� Dict = dictionary()

This function returns the value associated with Key in the dictionary Dict. fetch
assumes that the Key is present in the dictionary and an exception is generated if Key is
not in the dictionary.

71STDLIB

dict STDLIB Reference Manual

fetch keys(Dict) -> Keys

Types:

� Dict = dictionary()
� Keys = [term()]

This function returns a list of all keys in the dictionary.

filter(Pred, Dict1) -> Dict2

Types:

� Pred = fun(Key, Value) -> bool()
� Dict1 = Dict2 = dictionary()

Dict2 is a dictionary of all keys and values in Dict1 for which Pred(Key, Value) is
true.

find(Key, Dict) -> Result

Types:

� Key = term()
� Dict = dictionary()
� Result = fok, Valueg | error

This function searches for a key in a dictionary. Returns fok, Valueg where Value is
the value associated with Key, or error if the key is not present in the dictionary.

fold(Function, Acc0, Dict) -> Acc1

Types:

� Function = fun(Key, Value, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Dict = dictionary()

Calls Function on successive keys and values of Dict together with an extra argument
Acc (short for accumulator). Function must return a new accumulator which is passed
to the next call. Acc0 is returned if the list is empty. The evaluation order is undefined.

from list(List) -> Dict

Types:

� List = [fKey, Valueg]
� Dict = dictionary()

This function converts the dictionary to a list representation.

is key(Key, Dict) -> bool()

Types:

� Key = term()
� Dict = dictionary()

This function tests if Key is contained in the dictionary Dict

map(Func, Dict1) -> Dict2

72 STDLIB

STDLIB Reference Manual dict

Types:

� Func = fun(Key, Value) -> Value
� Dict1 = Dict2 = dictionary()

map calls Func on successive keys and values of Dict to return a new value for each key.
The evaluation order is undefined.

merge(Func, Dict1, Dict2) -> Dict3

Types:

� Func = fun(Key, Value1, Value2) -> Value
� Dict1 = Dict2 = Dict3 = dictionary()

merge merges two dictionaries, Dict1 and Dict2, to create a new dictionary. All the Key
- Value pairs from both dictionaries are included in the new dictionary. If a key occurs
in both dictionaries then Func is called with the key and both values to return a new
value. merge could be defined as:

merge(Fun, D1, D2) ->
fold(fun (K, V1, D) ->

update(K, fun (V2) -> Fun(K, V1, V2) end, V1, D)
end, D2, D1).

but is faster.

new() -> dictionary()

This function creates a new dictionary.

store(Key, Value, Dict1) -> Dict2

Types:

� Key = Value = term()
� Dict1 = Dict2 = dictionary()

This function stores a Key - Value pair in a dictionary. If the Key already exists in Dict1,
the associated value is replaced by Value.

to list(Dict) -> List

Types:

� Dict = dictionary()
� List = [fKey, Valueg]

This function converts the dictionary to a list representation.

update(Key, Function, Dict) -> Dict

Types:

� Key = term()
� Function = fun(Value) -> Value
� Dict = dictionary()

Update the a value in a dictionary by calling Function on the value to get a new value.
An exception is generated if Key is not present in the dictionary.

73STDLIB

dict STDLIB Reference Manual

update(Key, Function, Initial, Dict) -> Dict

Types:

� Key = Initial = term()
� Function = fun(Value) -> Value
� Dict = dictionary()

Update the a value in a dictionary by calling Function on the value to get a new value.
If Key is not present in the dictionary then Initial will be stored as the first value. For
example we could define append/3 as:

append(Key, Val, D) ->
update(Key, fun (Old) -> Old ++ [Val] end, [Val], D).

update counter(Key, Increment, Dict) -> Dict

Types:

� Key = term()
� Increment = number()
� Dict = dictionary()

Add Increment to the value associated with Key and store this value. If Key is not
present in the dictionary then Increment will be stored as the first value.

This is could have been defined as:

update_counter(Key, Incr, D) ->
update(Key, fun (Old) -> Old + Incr end, Incr, D).

but is faster.

Notes

The functions append and append list are included so we can store keyed values in a
list accumulator. For example:

> D0 = dict:new(),
D1 = dict:store(files, [], D0),
D2 = dict:append(files, f1, D1),
D3 = dict:append(files, f2, D2),
D4 = dict:append(files, f3, D3),
dict:fetch(files, D4).

[f1,f2,f3]

This saves the trouble of first fetching a keyed value, appending a new value to the list
of stored values, and storing the result.

The function fetch should be used if the key is known to be in the dictionary,
otherwise find.

74 STDLIB

STDLIB Reference Manual digraph

digraph
Erlang Module

The digraph module implements a version of labeled directed graphs. What makes the
graphs implemented here non-proper directed graphs is that multiple edges between
vertices are allowed. However, the customary definition of directed graphs will be used
in the text that follows.

A directed graph (or just “digraph”) is a pair (V,E) of a finite set V of vertices and a finite
set E of directed edges (or just “edges”). The set of edges E is a subset of VV (the
Cartesian product of V with itself). In this module, V is allowed to be empty; the so
obtained unique digraph is called the empty digraph. Both vertices and edges are
represented by unique Erlang terms.

Digraphs can be annotated with additional information. Such information may be
attached to the vertices and to the edges of the digraph. A digraph which has been
annotated is called a labeled digraph, and the information attached to a vertex or an edge
is called a label. Labels are Erlang terms.

An edge e=(v,w) is said to emanate from vertex v and to be incident on vertex w. The
out-degree of a vertex is the number of edges emanating from that vertex. The in-degree
of a vertex is the number of edges incident on that vertex. If there is an edge emanating
from v and incident on w, then w is is said to be an out-neighbour of v, and v is said to be
an in-neighbour of w. A path P from v[1] to v[k] in a digraph (V, E) is a non-empty
sequence v[1],v[2],...,v[k] of vertices in V such that there is an edge (v[i],v[i+1]) in E
for 1<=i<k. The length of the path P is k-1. P is simple if all vertices are distinct, except
that the first and the last vertices may be the same. P is a cycle if the length of P is not
zero and v[1] = v[k]. A loop is a cycle of length one. A simple cycle is a path that is both
a cycle and simple. An acyclic digraph is a digraph that has no cycles.

Exports

add edge(G, E, V1, V2, Label) -> edge() | ferror, Reasong

add edge(G, V1, V2, Label) -> edge() | ferror, Reasong

add edge(G, V1, V2) -> edge() | ferror, Reasong

Types:

� G = digraph()
� E = edge()
� V1 = V2 = vertex()
� Label = label()
� Reason = fbad edge, Pathg | fbad vertex, Vg

� Path = [vertex()]

75STDLIB

digraph STDLIB Reference Manual

add edge/5 creates (or modifies) the edge E of the digraph G, using Label as the (new)
label [page 75] of the edge. The edge is emanating [page 75] from V1 and incident
[page 75] on V2. Returns E.

add edge(G,V1,V2,Label) is equivalent to add edge(G,E,V1,V2,Label), where E is a
created edge. Tuples on the form [’$e’|N], where N is an integer>=1, are used for
representing the created edges.

add edge(G,V1,V2) is equivalent to add edge(G,V1,V2,[]).

If the edge would create a cycle in an acyclic digraph [page 75], then
ferror,fbad edge,Pathgg is returned. If either of V1 or V2 is not a vertex of the
digraph G, then ferror,fbad vertex,Vgg is returned, V=V1 or V=V2.

add vertex(G, V, Label) -> vertex()

add vertex(G, V) -> vertex()

add vertex(G) -> vertex()

Types:

� G = digraph()
� V = vertex()
� Label = label()

add vertex/3 creates (or modifies) the vertex V of the digraph G, using Label as the
(new) label [page 75] of the vertex. Returns V.

add vertex(G,V) is equivalent to add vertex(G,V,[]).

add vertex/1 creates a vertex using the empty list as label, and returns the created
vertex. Tuples on the form [’$v’|N], where N is an integer>=1, are used for
representing the created vertices.

del edge(G, E) -> true

Types:

� G = digraph()
� E = edge()

Deletes the edge E from the digraph G.

del edges(G, Edges) -> true

Types:

� G = digraph()
� Edges = [edge()]

Deletes the edges in the list Edges from the digraph G.

del path(G, V1, V2) -> true

Types:

� G = digraph()
� V1 = V2 = vertex()

76 STDLIB

STDLIB Reference Manual digraph

Deletes edges from the digraph G until there are no paths [page 75] from the vertex V1
to the vertex V2.

A sketch of the procedure employed: Find an arbitrary simple path [page 75]
v[1],v[2],...,v[k] from V1 to V2 in G. Remove all edges of G emanating [page 75] from
v[i] and incident [page 75] to v[i+1] for 1<=i<k (including multiple edges). Repeat
until there is no path between V1 and V2.

del vertex(G, V) -> true

Types:

� G = digraph()
� V = vertex()

Deletes the vertex V from the digraph G. Any edges emanating [page 75] from V or
incident [page 75] on V are also deleted.

del vertices(G, Vertices) -> true

Types:

� G = digraph()
� Vertices = [vertex()]

Deletes the vertices in the list Vertices from the digraph G.

delete(G) -> true

Types:

� G = digraph()

Deletes the digraph G. This call is important because digraphs are implemented with
Ets. There is no garbage collection of Ets tables. The digraph will, however, be deleted
if the process that created the digraph terminates.

edge(G, E) -> fE, V1, V2, Labelg | false

Types:

� G = digraph()
� E = edge()
� V1 = V2 = vertex()
� Label = label()

Returns fE,V1,V2,Labelg where Label is the label [page 75] of the edge E emanating
[page 75] from V1 and incident [page 75] on V2 of the digraph G. If there is no edge E of
the digraph G, then false is returned.

edges(G) -> Edges

Types:

� G = digraph()
� Edges = [edge()]

Returns a list of all edges of the digraph G, in some unspecified order.

edges(G, V) -> Edges

77STDLIB

digraph STDLIB Reference Manual

Types:

� G = digraph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges emanating [page 75] from or incident [page 75] on V of the
digraph G, in some unspecified order.

get cycle(G, V) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

If there is a simple cycle [page 75] of length two or more through the vertex V, then the
cycle is returned as a list [V,...,V] of vertices, otherwise if there is a loop [page 75]
through V, then the loop is returned as a list [V]. If there are no cycles through V, then
false is returned.

get path/3 is used for finding a simple cycle through V.

get path(G, V1, V2) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

Tries to find a simple path [page 75] from the vertex V1 to the vertex V2 of the digraph
G. Returns the path as a list [V1,...,V2] of vertices, or false if no simple path from V1
to V2 of length one or more exists.

The digraph G is traversed in a depth-first manner, and the first path found is returned.

get short cycle(G, V) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

Tries to find an as short as possible simple cycle [page 75] through the vertex V of the
digraph G. Returns the cycle as a list [V,...,V] of vertices, or false if no simple cycle
through V exists. Note that a loop [page 75] through V is returned as the list [V,V].

get short path/3 is used for finding a simple cycle through V.

get short path(G, V1, V2) -> Vertices | false

Types:

� G = digraph()
� V1 = V2 = vertex()
� Vertices = [vertex()]

78 STDLIB

STDLIB Reference Manual digraph

Tries to find an as short as possible simple path [page 75] from the vertex V1 to the
vertex V2 of the digraph G. Returns the path as a list [V1,...,V2] of vertices, or false
if no simple path from V1 to V2 of length one or more exists.

The digraph G is traversed in a breadth-first manner, and the first path found is returned.

in degree(G, V) -> integer()

Types:

� G= digraph()
� V = vertex()

Returns the in-degree [page 75] of the vertex V of the digraph G.

in edges(G, V) -> Edges

Types:

� G = digraph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges incident [page 75] on V of the digraph G, in some unspecified
order.

in neighbours(G, V) -> Vertices

Types:

� G = digraph()
� V = vertex()
� Vertices = [vertex()]

Returns a list of all in-neighbours [page 75] of V of the digraph G, in some unspecified
order.

info(G) -> InfoList

Types:

� G = digraph()
� InfoList = [fcyclicity, Cyclicityg, fmemory, NoWordsg, fprotection, Protectiong]
� Cyclicity = cyclic | acyclic
� Protection = public | protected | private
� NoWords = integer() >= 0

Returns a list of fTag, Valueg pairs describing the digraph G. The following pairs are
returned:

� fcyclicity, Cyclicityg, where Cyclicity is cyclic or acyclic, according to
the options given to new.

� fmemory, NoWordsg, where NoWords is the number of words allocated to the ets
tables.

� fprotection, Protectiong, where Protection is public, protected or
private, according to the options given to new.

79STDLIB

digraph STDLIB Reference Manual

new() -> digraph()

Equivalent to new([]).

new(Type) -> digraph() | ferror, Reasong

Types:

� Type = [cyclic | acyclic | public | private | protected]
� Reason = funknown type, term()g

Returns an empty digraph [page 75] with properties according to the options in Type:

cyclic Allow cycles [page 75] in the digraph (default).

acyclic The digraph is to be kept acyclic [page 75].

public The digraph may be read and modified by any process.

protected Other processes can only read the digraph (default).

private The digraph can be read and modified by the creating process only.

If an unrecognized type option T is given, then ferror,funknown type,Tgg is returned.

no edges(G) -> integer() >= 0

Types:

� G = digraph()

Returns the number of edges of the digraph G.

no vertices(G) -> integer() >= 0

Types:

� G = digraph()

Returns the number of vertices of the digraph G.

out degree(G, V) -> integer()

Types:

� G = digraph()
� V = vertex()

Returns the out-degree [page 75] of the vertex V of the digraph G.

out edges(G, V) -> Edges

Types:

� G = digraph()
� V = vertex()
� Edges = [edge()]

Returns a list of all edges emanating [page 75] from V of the digraph G, in some
unspecified order.

out neighbours(G, V) -> Vertices

Types:

80 STDLIB

STDLIB Reference Manual digraph

� G = digraph()
� V = vertex()
� Vertices = [vertex()]

Returns a list of all out-neighbours [page 75] of V of the digraph G, in some unspecified
order.

vertex(G, V) -> fV, Labelg | false

Types:

� G = digraph()
� V = vertex()
� Label = label()

Returns fV,Labelg where Label is the label [page 75] of the vertex V of the digraph G,
or false if there is no vertex V of the digraph G.

vertices(G) -> Vertices

Types:

� G = digraph()
� Vertices = [vertex()]

Returns a list of all vertices of the digraph G, in some unspecified order.

See Also

digraph utils [page 82](3), ets(3)

81STDLIB

digraph utils STDLIB Reference Manual

digraph utils
Erlang Module

The digraph utils module implements some algorithms based on depth-first traversal
of directed graphs. See the digraph module for basic functions on directed graphs.

A directed graph (or just “digraph”) is a pair (V,E) of a finite set V of vertices and a finite
set E of directed edges (or just “edges”). The set of edges E is a subset of VV (the
Cartesian product of V with itself).

Digraphs can be annotated with additional information. Such information may be
attached to the vertices and to the edges of the digraph. A digraph which has been
annotated is called a labeled digraph, and the information attached to a vertex or an edge
is called a label.

An edge e=(v,w) is said to emanate from vertex v and to be incident on vertex w. If there
is an edge emanating from v and incident on w, then w is is said to be an out-neighbour
of v. A path P from v[1] to v[k] in a digraph (V, E) is a non-empty sequence
v[1],v[2],...,v[k] of vertices in V such that there is an edge (v[i],v[i+1]) in E for
1<=i<k. The length of the path P is k-1. P is a cycle if the length of P is not zero and v[1]
= v[k]. A loop is a cycle of length one. An acyclic digraph is a digraph that has no cycles.

A depth-first traversal of a directed digraph can be viewed as a process that visits all
vertices of the digraph. Initially, all vertices are marked as unvisited. The traversal starts
with an arbitrarily chosen vertex, which is marked as visited, and follows an edge to an
unmarked vertex, marking that vertex. The search then proceeds from that vertex in
the same fashion, until there is no edge leading to an unvisited vertex. At that point the
process backtracks, and the traversal continues as long as there are unexamined edges. If
there remain unvisited vertices when all edges from the first vertex have been
examined, some hitherto unvisited vertex is chosen, and the process is repeated.

A partial ordering of a set S is a transitive, antisymmetric and reflexive relation between
the objects of S. The problem of topological sorting is to find a total ordering of S that is a
superset of the partial ordering. A digraph G=(V,E) is equivalent to a relation E on V
(we neglect the fact that the version of directed graphs implemented in the digraph
module allows multiple edges between vertices). If the digraph has no cycles of length
two or more, then the reflexive and transitive closure of E is a partial ordering.

A subgraph G’ of G is a digraph whose vertices and edges form subsets of the vertices
and edges of G. G’ is maximal with respect to a property P if all other subgraphs that
include the vertices of G’ do not have the property P. A strongly connected component is a
maximal subgraph such that there is a path between each pair of vertices. A connected
component is a maximal subgraph such that there is a path between each pair of vertices,
considering all edges undirected.

82 STDLIB

STDLIB Reference Manual digraph utils

Exports

components(Digraph) -> [Component]

Types:

� Digraph = digraph()
� Component = [vertex()]

Returns a list of connected components [page 82]. Each component is represented by
its vertices. The order of the vertices and the order of the components are arbitrary.
Each vertex of the digraph Digraphoccurs in exactly one component.

condensation(Digraph) -> CondensedDigraph

Types:

� Digraph = CondensedDigraph = digraph()

Creates a digraph where the vertices are the strongly connected components [page 82]
of Digraph as returned by strong components/1. If X and Y are strongly connected
components, and there exist vertices x and y in X and Y respectively such that there is
an edge emanating [page 82] from x and incident [page 82] on y, then an edge
emanating from X and incident on Y is created.

The created digraph has the same type as Digraph. All vertices and edges have the
default label [page 82] [].

Each and every cycle [page 82] is included in some strongly connected component,
which implies that there always exists a topological ordering [page 82] of the created
digraph.

cyclic strong components(Digraph) -> [StrongComponent]

Types:

� Digraph = digraph()
� StrongComponent = [vertex()]

Returns a list of strongly connected components [page 82]. Each strongly component is
represented by its vertices. The order of the vertices and the order of the components
are arbitrary. Only vertices that are included in some cycle [page 82] in Digraph are
returned, otherwise the returned list is equal to that returned by strong components/1.

is acyclic(Digraph) -> bool()

Types:

� Digraph = digraph()

Returns true if and only if the digraph Digraph is acyclic [page 82].

loop vertices(Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns a list of all vertices of Digraph that are included in some loop [page 82].

83STDLIB

digraph utils STDLIB Reference Manual

postorder(Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal
[page 82] of the digraph, collecting visited vertices in postorder. More precisely, the
vertices visited while searching from an arbitrarily chosen vertex are collected in
postorder, and all those collected vertices are placed before the subsequently visited
vertices.

preorder(Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns all vertices of the digraph Digraph. The order is given by a depth-first traversal
[page 82] of the digraph, collecting visited vertices in pre-order.

reachable(Vertices, Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 82] in Digraph from some vertex of Vertices to the vertex. In particular,
since paths may have length zero, the vertices of Vertices are included in the returned
list.

reachable neighbours(Vertices, Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 82] in Digraph of length one or more from some vertex of Vertices to
the vertex. As a consequence, only those vertices of Vertices that are included in some
cycle [page 82] are returned.

reaching(Vertices, Digraph) -> Vertices

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 82] from the vertex to some vertex of Vertices. In particular, since paths
may have length zero, the vertices of Vertices are included in the returned list.

reaching neighbours(Vertices, Digraph) -> Vertices

Types:

84 STDLIB

STDLIB Reference Manual digraph utils

� Digraph = digraph()
� Vertices = [vertex()]

Returns an unsorted list of digraph vertices such that for each vertex in the list, there is
a path [page 82] of length one or more from the vertex to some vertex of Vertices. As
a consequence, only those vertices of Vertices that are included in some cycle [page
82] are returned.

strong components(Digraph) -> [StrongComponent]

Types:

� Digraph = digraph()
� StrongComponent = [vertex()]

Returns a list of strongly connected components [page 82]. Each strongly component is
represented by its vertices. The order of the vertices and the order of the components
are arbitrary. Each vertex of the digraph Digraph occurs in exactly one strong
component.

subgraph(Digraph, Vertices [, Options]) -> Subgraph | ferror, Reasong

Types:

� Digraph = Subgraph = digraph()
� Options = [ftype, SubgraphTypeg, fkeep labels, bool()g]
� Reason = finvalid option, term()g | funknown type, term()g
� SubgraphType = inherit | type()
� Vertices = [vertex()]

Creates a maximal subgraph [page 82] of Digraph having as vertices those vertices of
Digraph that are mentioned in Vertices.

If the value of the option type is inherit, which is the default, then the type of
Digraph is used for the subgraph as well. Otherwise the option value of type is used as
argument to digraph:new/1.

If the value of the option keep labels is true, which is the default, then the labels
[page 82] of vertices and edges of Digraph are used for the subgraph as well. If the
value is false, then the default label, [], is used for the subgraph’s vertices and edges.

subgraph(Digraph, Vertices) is equivalent to subgraph(Digraph, Vertices, []).

topsort(Digraph) -> Vertices | false

Types:

� Digraph = digraph()
� Vertices = [vertex()]

Returns a topological ordering [page 82] of the vertices of the digraph Digraph if such
an ordering exists, false otherwise. For each vertex in the returned list, there are no
out-neighbours [page 82] that occur earlier in the list.

See Also

digraph [page 75](3)

85STDLIB

epp STDLIB Reference Manual

epp
Erlang Module

The Erlang code preprocessor includes functions which are used by compile to
preprocess macros and include files before the actual parsing takes place.

Exports

open(FileName, IncludePath) -> fok,Eppg | ferror, ErrorDescriptorg

open(FileName, IncludePath, PredefMacros) -> fok,Eppg | ferror, ErrorDescriptorg

Types:

� FileName = atom() | string()
� IncludePath = [DirectoryName]
� DirectoryName = atom() | string()
� PredefMacros = [fatom(),term()g]
� Epp = pid() – handle to the epp server
� ErrorDescriptor = term()

Opens a file for preprocessing.

close(Epp) -> ok

Types:

� Epp = pid() – handle to the epp server

Closes the preprocessing of a file.

parse erl form(Epp) -> fok, AbsFormg | feof, Lineg | ferror, ErrorInfog

Types:

� Epp = pid()
� AbsForm = term()
� Line = integer()
� ErrorInfo = see separate description below.

Returns the next Erlang form from the opened Erlang source file. The tuple feof,
Lineg is returned at end-of-file. The first form corresponds to an implicit attribute
-file(File,1)., where File is the name of the file.

parse file(FileName,IncludePath,PredefMacro) -> fok,[Form]g | ferror,OpenErrorg

Types:

� FileName = atom() | string()

86 STDLIB

STDLIB Reference Manual epp

� IncludePath = [DirectoryName]
� DirectoryName = atom() | string()
� PredefMacros = [fatom(),term()g]
� Form = term() – same as returned by erl parse:parse form

Preprocesses and parses an Erlang source file. Note that the tuple feof, Lineg returned
at end-of-file is included as a “form”.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

erl parse [page 96]

87STDLIB

erl eval STDLIB Reference Manual

erl eval
Erlang Module

This module provides an interpreter for Erlang expressions. The expressions are in the
abstract syntax as returned by erl parse, the Erlang parser, or a call to
io:parse erl exprs/2.

Exports

exprs(Expressions, Bindings) -> fvalue, Value, NewBindingsg

exprs(Expressions, Bindings, LocalFunctionHandler) -> fvalue, Value, NewBindingsg

Types:

� Expressions = as returned by erl parse or io:parse erl exprs/2
� Bindings = as returned by bindings/1
� LocalFunctionHandler = fvalue, Funcg | feval, Funcg | none

Evaluates Expressions with the set of bindings Bindings, where Expressions is a
sequence of expressions (in abstract syntax) of a type which may be returned by
io:parse erl exprs/2. See below for an explanation of how and when to use the
argument LocalFunctionHandler.

Returns fvalue, Value, NewBindingsg

expr(Expression, Bindings) -> f value, Value, NewBindings g

expr(Expression, Bindings, LocalFunctionHandler) -> f value, Value, NewBindings g

Types:

� Expression = as returned by io:parse erl form/2, for example
� Bindings = as returned by bindings/1
� LocalFunctionHandler = fvalue, Funcg | feval, Funcg | none

Evaluates Expression with the set of bindings Bindings. Expression is an expression
(in abstract syntax) of a type which may be returned by io:parse erl form/2. See
below for an explanation of how and when to use the argument
LocalFunctionHandler.

Returns fvalue, Value, NewBindingsg.

expr list(ExpressionList, Bindings) -> fValueList, NewBindingsg

expr list(ExpressionList, Bindings, LocalFunctionHandler) -> fValueList, NewBindingsg

88 STDLIB

STDLIB Reference Manual erl eval

Evaluates a list of expressions in parallel, using the same initial bindings for each
expression. Attempts are made to merge the bindings returned from each evaluation.
This function is useful in the LocalFunctionHandler. See below.

Returns fValueList, NewBindingsg.

new bindings() -> BindingStruct

Returns an empty binding structure.

bindings(BindingStruct) -> Bindings

Returns the list of bindings contained in the binding structure.

binding(Name, BindingStruct) -> Binding

Returns the binding of Name in BindingStruct.

add binding(Name, Value, Bindings) -> BindingStruct

Adds the binding Name = Value to Bindings. Returns an updated binding structure.

del binding(Name, Bindings) -> BindingStruct

Removes the binding of Name in Bindings. Returns an updated binding structure.

Local Function Handler

During evaluation of a function, no calls can be made to local functions. An undefined
function error would be generated. However, the optional argument
LocalFunctionHandler may be used to define a function which is called when there is
a call to a local function. The argument can have the following formats:

fvalue,Funcg This defines a local function handler which is called with:

Func(Name, Arguments)

Name is the name of the local function and Arguments is a list of the evaluated
arguments. The function handler returns the value of the local function. In this
case, it is not possible to access the current bindings. To signal an error, the
function handler just calls exit/1 with a suitable exit value.

feval,Funcg This defines a local function handler which is called with:

Func(Name, Arguments, Bindings)

Name is the name of the local function, Arguments is a list of the unevaluated
arguments, and Bindings are the current variable bindings. The function handler
returns:

{value,Value,NewBindings}

Value is the value of the local function and NewBindings are the updated variable
bindings. In this case, the function handler must itself evaluate all the function
arguments and manage the bindings. To signal an error, the function handler just
calls exit/1 with a suitable exit value.

none There is no local function handler.

89STDLIB

erl eval STDLIB Reference Manual

Bugs

The evaluator is not complete. receive cannot be handled properly.

Any undocumented functions in erl eval should not be used.

90 STDLIB

STDLIB Reference Manual erl id trans

erl id trans
Erlang Module

This module performs an identity parse transformation of Erlang code. It is included as
an example for users who may wish to write their own parse transformers. If the option
fparse transform,Moduleg is passed to the compiler, a user written function
parse transform/2 is called by the compiler before the code is checked for errors.

Exports

parse transform(Forms, Options) -> Forms

Types:

� Forms = [erlang form()]
� Options = [compiler options()]

Performs an identity transformation on Erlang forms, as an example.

Parse Transformations

Parse transformations are used if a programmer wants to use Erlang syntax, but with
different semantics. The original Erlang code is then transformed into other Erlang code.

Note:
Programmers are strongly advised not to engage in parse transformations and no
support is offered for problems encountered.

See Also

erl parse [page 96] compile.

91STDLIB

erl internal STDLIB Reference Manual

erl internal
Erlang Module

This module defines Erlang BIFs, guard tests and operators. This module is only of
interest to programmers who manipulate Erlang code.

Exports

bif(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is automatically recognized by the
compiler, otherwise false.

guard bif(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is an Erlang BIF which is allowed in guards, otherwise
false.

type test(Name, Arity) -> bool()

Types:

� Name = atom()
� Arity = integer()

Returns true if Name/Arity is a valid Erlang type test, otherwise false.

arith op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is an arithmetic operator, otherwise false.

bool op(OpName, Arity) -> bool()

Types:

� OpName = atom()

92 STDLIB

STDLIB Reference Manual erl internal

� Arity = integer()

Returns true if OpName/Arity is a Boolean operator, otherwise false.

comp op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a comparison operator, otherwise false.

list op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a list operator, otherwise false.

send op(OpName, Arity) -> bool()

Types:

� OpName = atom()
� Arity = integer()

Returns true if OpName/Arity is a send operator, otherwise false.

op type(OpName, Arity) -> Type

Types:

� OpName = atom()
� Arity = integer()
� Type = arith | bool | comp | list | send

Returns the Type of operator that OpName/Arity belongs to, or generates a
function clause error if it is not an operator at all.

93STDLIB

erl lint STDLIB Reference Manual

erl lint
Erlang Module

This module is used to check Erlang code for illegal syntax and other bugs. It also warns
against coding practices which are not recommended.

The errors detected include:

� redefined and undefined functions

� unbound and unsafe variables

� illegal record usage.

Warnings include:

� unused functions and imports

� variables imported into matches

� variables exported from if/case/receive

� variables shadowed in lambdas and list comprehensions.

Some of the warnings are optional, and can be turned on by giving the appropriate
option, described below.

The functions in this module are invoked automatically by the Erlang compiler and
there is no reason to invoke these functions separately unless you have written your own
Erlang compiler.

Exports

module(AbsForms) -> fok,Warningsg | ferror,Errors,Warningsg

module(AbsForms, FileName) -> fok,Warningsg | ferror,Errors,Warningsg

module(AbsForms, FileName, CompileOptions) -> fok,Warningsg | ferror,Errors,Warningsg

Types:

� AbsForms = [term()]
� FileName = FileName2 = atom() | string()
� Warnings = Errors = [fFilename2,[ErrorInfo]g]
� ErrorInfo = see separate description below.
� CompileOptions = [term()]

This function checks all the forms in a module for errors. It returns:

fok,Warningsg There were no errors in the module.

ferror,Errors,Warningsg There were errors in the module.

94 STDLIB

STDLIB Reference Manual erl lint

The elements of Options selecting optional warnings are as follows:

fwarn format, Verbosityg Causes warnings to be emitted for malformed format
strings as arguments to io:format and similar functions. Verbosity selects the
amount of warnings: 0 = no warnings; 1 = warnings for invalid format strings and
incorrect number of arguments; 2 = warnings also when the validity could not be
checked (for example, when the format string argument is a variable). The default
verbosity is 1.

warn unused vars Causes warnings to be emitted for variables which are not used,
with the exception of variables beginning with an underscore (“Prolog style
warnings”).

The AbsForms of a module which comes from a file that is read through epp, the Erlang
pre-processor, can come from many files. This means that any references to errors must
include the file name (see epp [page 86], or parser erl parse [page 96] The warnings
and errors returned have the following format:

[{FileName2,[ErrorInfo]}]

The errors and warnings are listed in the order in which they are encountered in the
forms. This means that the errors from one file may be split into different entries in the
list of errors.

is guard test(Expr) -> bool()

Types:

� Expr = term()

This function tests if Expr is a legal guard test. Expr is an Erlang term representing the
abstract form for the expression. erl parse:parse exprs(Tokens) can be used to
generate a list of Expr.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning.
This function is usually called implicitly when processing an ErrorInfo structure (see
below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

erl parse [page 96], epp [page 86]

95STDLIB

erl parse STDLIB Reference Manual

erl parse
Erlang Module

This module is the basic Erlang parser which converts tokens into the abstract form of
either forms (i.e., top-level constructs), expressions, or terms. Note that a token list
must end with the dot token in order to be acceptable to the parse functions (see
erl scan).

Exports

parse form(Tokens) -> fok, AbsFormg | ferror, ErrorInfog

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� AbsForm = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a form. It returns:

fok, AbsFormg The parsing was successful. See section Abstract Form [page 97] below
for a description of AbsForm.

ferror, ErrorInfog An error occurred.

parse exprs(Tokens) -> fok, Expr listg | ferror, ErrorInfog

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� Expr list = [AbsExpr]
� AbsExpr = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a list of expressions. It returns:

fok, Expr listg The parsing was successful. Expr list is a list of the form AbsExpr,
which is described in the section Abstract Form [page 97] below.

ferror, ErrorInfog An error occurred.

parse term(Tokens) -> fok, Termg | ferror, ErrorInfog

96 STDLIB

STDLIB Reference Manual erl parse

Types:

� Tokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� Term = term()
� ErrorInfo = see section Error Information below.

This function parses Tokens as if it were a term. It returns:

fok, Termg The parsing was successful. Term is the Erlang term corresponding to the
token list.

ferror, ErrorInfog An error occurred.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Uses an ErrorDescriptor and returns a string which describes the error. This function
is usually called implicitly when an ErrorInfo structure is processed (see below).

tokens(AbsTerm) -> Tokens

tokens(AbsTerm, MoreTokens) -> Tokens

Types:

� Tokens = MoreTokens = [Token]
� Token = fTag,Lineg | fTag,Line,term()g
� Tag = atom()
� AbsTerm = term()
� ErrorInfo = see section Error Information below.

This function generates a list of tokens representing the abstract form AbsTerm of an
expression. Optionally, it appends Moretokens.

normalise(AbsTerm) -> Data

Types:

� AbsTerm = Data = term()

Converts the abstract form AbsTerm of a term into a conventional Erlang data structure
(i.e., the term itself). This is the inverse of abstract/1.

abstract(Data) -> AbsTerm

Types:

� Data = AbsTerm = term()

Converts the Erlang data structure Data into an abstract form of type AbsTerm. This is
the inverse of normalise/1.

Abstract Form

To be supplied

97STDLIB

erl parse STDLIB Reference Manual

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

See Also

io [page 160], erl scan [page 102]

98 STDLIB

STDLIB Reference Manual erl pp

erl pp
Erlang Module

The functions in this module are used to generate aesthetically attractive
representations of abstract forms, which are suitable for printing. All functions return
(possibly deep) lists of characters and generate an error if the form is wrong.

All functions can have an optional argument which specifies a hook that is called if an
attempt is made to print an unknown form.

Exports

form(Form) -> DeepCharList

form(Form, HookFunction) -> DeepCharList

Types:

� Form = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

Pretty prints a Form which is an abstract form of a type which is returned by
erl parse:parse form.

attribute(Attribute) -> DeepCharList

attribute(Attribute, HookFunction) -> DeepCharList

Types:

� Attribute = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the attribute Attribute.

function(Function) -> DeepCharList

function(Function, HookFunction) -> DeepCharList

Types:

� Function = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the function Function.

guard(Guard) -> DeepCharList

guard(Guard, HookFunction) -> DeepCharList

99STDLIB

erl pp STDLIB Reference Manual

Types:

� Form = term()
� HookFunction = see separate description below.
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the guard test Guard.

exprs(Expressions) -> DeepCharList

exprs(Expressions, HookFunction) -> DeepCharList

exprs(Expressions, Indent, HookFunction) -> DeepCharList

Types:

� Expressions = term()
� HookFunction = see separate description below.
� Indent = integer()
� DeepCharList = [char()|DeepCharList]

The same as form, but only for the sequence of expressions in Expressions.

expr(Expression) -> DeepCharList

expr(Expression, HookFunction) -> DeepCharList

expr(Expression, Indent, HookFunction) -> DeepCharList

expr(Expression, Indent, Precedence, HookFunction) ->-> DeepCharList

Types:

� Expression = term()
� HookFunction = see separate description below.
� Indent = integer()
� Precedence =
� DeepCharList = [char()|DeepCharList]

This function prints one expression. It is useful for implementing hooks (see below).

Unknown Expression Hooks

The optional argument HookFunction, shown in the functions described above, defines
a function which is called when an unknown form occurs where there should be a valid
expression. It can have the following formats:

Function The hook function is called by:

Function(Expr,
CurrentIndentation,
CurrentPrecedence,
HookFunction)

none There is no hook function

The called hook function should return a (possibly deep) list of characters. expr/4 is
useful in a hook.

If CurrentIndentation is negative, there will be no line breaks and only a space is used
as a separator.

100 STDLIB

STDLIB Reference Manual erl pp

Bugs

It should be possible to have hook functions for unknown forms at places other than
expressions.

See Also

io [page 160], erl parse [page 96], erl eval [page 88]

101STDLIB

erl scan STDLIB Reference Manual

erl scan
Erlang Module

This module contains functions for tokenizing characters into Erlang tokens.

Exports

string(CharList,StartLine]) -> fok, Tokens, EndLineg | Error

string(CharList) -> fok, Tokens, EndLineg | Error

Types:

� CharList = string()
� StartLine = EndLine = Line = integer()
� Tokens = [fatom(),Lineg|fatom(),Line,term()g]
� Error = ferror, ErrorInfo, EndLineg

Takes the list of characters CharList and tries to scan (tokenize) them. Returns fok,
Tokens, EndLineg, where Tokens are the Erlang tokens from CharList. EndLine is
the last line where a token was found.

StartLine indicates the initial line when scanning starts. string/1 is equivalent to
string(CharList,1).

ferror, ErrorInfo, EndLineg is returned if an error occurs. EndLine indicates where
the error occurred.

tokens(Continuation, CharList, StartLine) ->Return

Types:

� Return = fdone, Result, LeftOverCharsg | fmore, Continuationg
� Continuation = [] | string()
� CharList = string()
� StartLine = EndLine = integer()
� Result = fok, Tokens, EndLineg | feof, EndLineg
� Tokens = [fatom(),Lineg|fatom(),Line,term()g]

This is the re-entrant scanner which scans characters until a dot (’.’ whitespace) has
been reached. It returns:

fdone, Result, LeftOverCharsg This return indicates that there is sufficient input
data to get an input. Result is:

fok, Tokens, EndLineg The scanning was successful. Tokens is the list of tokens
including dot.

feof, EndLineg End of file was encountered before any more tokens.

102 STDLIB

STDLIB Reference Manual erl scan

ferror, ErrorInfo, EndLineg An error occurred.

fmore, Continuationg More data is required for building a term. Continuation must
be passed in a new call to tokens/3 when more data is available.

reserved word(Atom) -> bool()

Returns true if Atom is an Erlang reserved word, otherwise false.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Takes an ErrorDescriptor and returns a string which describes the error or warning.
This function is usually called implicitly when processing an ErrorInfo structure (see
below).

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

Notes

The continuation of the first call to the re-entrant input functions must be []. Refer to
Armstrong, Virding and Williams, ’Concurrent Programming in Erlang’, Chapter 13, for
a complete description of how the re-entrant input scheme works.

See Also

io [page 160] erl parse [page 96]

103STDLIB

ets STDLIB Reference Manual

ets
Erlang Module

This module is an interface to the Erlang built-in term storage BIFs. These provide the
ability to store very large quantities of data in an Erlang runtime system, and to have
constant access time to the data. (In the case of ordered set, see below, access time is
proportional to the logarithm of the number of objects stored).

Data is organized as a set of dynamic tables, which can store tuples. Each table is
created by a process. When the process terminates, the table is automatically destroyed.
Every table has access rights set at creation.

Tables are divided into four different types, set, ordered set, bag and duplicate bag.
A set or ordered set table can only have one object associated with each key. A bag
or duplicate bag can have many objects associated with each key.

The number of tables stored at one Erlang node is limited. The current default limit is
approximately 1400 tables. The upper limit can be increased by setting the
environment variable ERL MAX ETS TABLES before starting the Erlang runtime system
(i.e. with the -env option to erl/werl). The actual limit may be slightly higher than
the one specified, but never lower.

Note that there is no automatic garbage collection for tables. Even if there are no
references to a table from any process, it will not automatically be destroyed unless the
owner process terminates. It can be destroyed explicitly by using delete/1.

Some implementation details:

� In the current implementation, every object insert and look-up operation results in
one copy of the object.

� This module provides very limited support for concurrent updates. No locking is
available, but the safe fixtable/2 function can be used to guarantee that a
sequence of first/1 and next/2 calls will traverse the table without errors even if
another process (or the same process) simultaneously deletes or inserts objects in
the table.

� ’$end of table’ should not be used as a key since this atom is used to mark the
end of the table when using first/next.

In general, the functions below will exit with reason badarg if any argument is of the
wrong format, or if the table identifier is invalid.
The type tid() is used to denote a table identifier. Note that the internal structure of
this type is implementation-specific.

104 STDLIB

STDLIB Reference Manual ets

Exports

all() -> [Tab]

Types:

� Tab = tid() | atom()

Returns a list of all tables at the node. Named tables are given by their names, unnamed
tables are given by their table identifiers.

delete(Tab) -> true

Types:

� Tab = tid() | atom()

Deletes the entire table Tab.

delete(Tab, Key) -> true

Types:

� Tab = tid() | atom()
� Key = term()

Deletes all objects with the key Key from the table Tab.

delete all objects(Tab) -> true

Types:

� Tab = tid() | atom()

Delete all objects in the ETS table Tab. The deletion is atomic.

delete object(Tab,Object) -> true

Types:

� Tab = tid() | atom()
� Object = tuple()

Delete the exact object Object from the ETS table, leaving objects with the same key
but other differences (useful for type bag).

file2tab(Filename) -> fok,Tabg | ferror,Reasong

Types:

� Filename = string() | atom()
� Tab = tid() | atom()
� Reason = term()

Reads a file produced by tab2file/2 and creates the corresponding table Tab.

first(Tab) -> Key | ’$end of table’

Types:

� Tab = tid() | atom()
� Key = term()

105STDLIB

ets STDLIB Reference Manual

Returns the first key Key in the table Tab. If the table is of the ordered set type, the
first key in Erlang term order will be returned. If the table is of any other type, the first
key according to the table’s internal order will be returned. If the table is empty,
’$end of table’ will be returned.

Use next/2 to find subsequent keys in the table.

fixtable(Tab, true|false) -> true | false

Types:

� Tab = tid() | atom()

Warning:
The function is retained for backwards compatibility only. Use safe fixtable/2
instead.

Fixes a table for safe traversal. The function is primarily used by the Mnesia DBMS to
implement functions which allow write operations in a table, although the table is in
the process of being copied to disk or to another node. It does not keep track of when
and how tables are fixed.

foldl(Function, Acc0, Tab) -> Acc1

Types:

� Function = fun(A, AccIn) -> AccOut
� Tab = tid() | atom()
� Acc0 = Acc1 = AccIn = AccOut = term()

Acc0 is returned if the table is empty. This function is similar to lists:foldl/3. The
order in which the elements of the table are traversed is unspecified, except for tables of
type ordered set, for which they are traversed first to last. Since safe fixtable/2 is
called, the table must be public or owned by the calling process.

foldr(Function, Acc0, Tab) -> Acc1

Types:

� Function = fun(A, AccIn) -> AccOut
� Tab = tid() | atom()
� Acc0 = Acc1 = AccIn = AccOut = term()

Acc0 is returned if the table is empty. This function is similar to lists:foldr/3. The
order in which the elements of the table are traversed is unspecified, except for tables of
type ordered set, for which they are traversed last to first. Since safe fixtable/2 is
called, the table must be public or owned by the calling process.

from dets(Tab, DetsTab) -> Tab

Types:

� Tab = tid() | atom()
� DetsTab = atom()

106 STDLIB

STDLIB Reference Manual ets

Fills an already created ETS table with the objects in the already opened DETS table
named DetsTab. The ETS table is emptied before the objects are inserted.

i() -> void()

Displays information about all ETS tables on tty.

i(Tab) -> void()

Types:

� Tab = tid() | atom()

Browses the table Tab on tty.

info(Tab) -> [fItem,Valueg] | undefined

Types:

� Tab = tid() | atom()
� Item, Value - see below

Returns information about the table Tab as a list of fItem,Valueg tuples:

� Item=memory, Value=int()
The number of words allocated to the table.

� Item=owner, Value=pid()
The pid of the owner of the table.

� Item=name, Value=atom()
The name of the table.

� Item=size, Value=int()
The number of objects inserted in the table.

� Item=node, Value=atom()
The node where the table is stored. This field is no longer meaningful as tables
cannot be accessed from other nodes.

� Item=named table, Value=true|false
Indicates if the table is named or not.

� Item=type, Value=set|ordered set|bag|duplicate bag
The table type.

� Item=keypos, Value=int()
The key position.

� Item=protection, Value=public|protected|private
The table access rights.

info(Tab, Item) -> Value | undefined

Types:

� Tab = tid() | atom()
� Item, Value - see below

Returns the information associated with Item for the table Tab. In addition to the
fItem,Valueg pairs defined for info/1, the following items are allowed:

107STDLIB

ets STDLIB Reference Manual

� Item=fixed, Value=true|false
Indicates if the table is fixed by any process or not.

� Item=safe fixed, Value=fFirstFixed,Infog|false
If the table has been fixed using safe fixtable/2, the call returns a tuple where
FirstFixed is the time when the table was first fixed by a process, which may or
may not be one of the processes it is fixed by right now.
Info is a possibly empty lists of tuples fPid,RefCountg, one tuple for every
process the table is fixed by right now. RefCount is the value of the reference
counter, keeping track of how many times the table has been fixed by the process.
If the table never has been fixed, the call returns false.

init table(Name, InitFun) -> true

Types:

� Name = atom()
� InitFun = fun(Arg) -> Res
� Arg = read | close
� Res = end of input | f[object()], InitFung | term()

Replaces the existing objects of the table Tab with objects created by calling the input
function InitFun, see below. This function is provided for compatibility with the
DETS module, it’s not more efficient than filling a table by using ets:insert/2.

When called with the argument read the function InitFun is assumed to return
end of input when there is no more input, or fObjects, Fung, where Objects is a list
of objects and Fun is a new input function. Any other value Value is returned as an error
ferror, finit fun, Valuegg. Each input function will be called exactly once, and
should an error occur, the last function is called with the argument close, the reply of
which is ignored.

If the type of the table is set and there is more than one object with a given key, one of
the objects is chosen. This is not necessarily the last object with the given key in the
sequence of objects returned by the input functions. This holds also for duplicated
objects stored in tables of type duplicate bag.

insert(Tab, ObjectOrObjects) -> true

Types:

� Tab = tid() | atom()
� ObjectOrObjects = tuple() | [tuple()]

Inserts the object or all of the objects in the list ObjectOrObjects into the table Tab. If
there already exists an object with the same key as one of the objects, and the table is a
set or ordered set table, the old object will be replaced. If the list contains more than
one object with the same key and the table is a set/ordered set, one will be inserted,
which one is not defined.

last(Tab) -> Key | ’$end of table’

Types:

� Tab = tid() | atom()
� Key = term()

108 STDLIB

STDLIB Reference Manual ets

Returns the last key Key according to Erlang term order in the table Tab of the
ordered set type. If the table is of any other type, the function is synonymous to
first/2. If the table is empty, ’$end of table’ is returned.

Use prev/2 to find preceding keys in the table.

lookup(Tab, Key) -> [Object]

Types:

� Tab = tid() | atom()
� Key = term()
� Object = tuple()

Returns a list of all objects with the key Key in the table Tab.

If the table is of type set or ordered set, the function returns either the empty list or a
list with one element, as there cannot be more than one object with the same key. If the
table is of type bag or duplicate bag, the function returns a list of arbitrary length.

Note that the time order of object insertions is preserved; The first object inserted with
the given key will be first in the resulting list, and so on.

Insert and look-up times in tables of type set, bag and duplicate bag are constant,
regardless of the size of the table. For the ordered set data-type, time is proportional
to the (binary) logarithm of the number of objects.

lookup element(Tab, Key, Pos) -> Elem

Types:

� Tab = tid() | atom()
� Key = term()
� Pos = int()
� Elem = term() | [term()]

If the table Tab is of type set or ordered set, the function returns the Pos:th element
of the object with the key Key.

If the table is of type bag or duplicate bag, the functions returns a list with the Pos:th
element of every object with the key Key.

If no object with the key Key exists, the function will exit with reason badarg.

match(Tab, Pattern) -> [Match]

Types:

� Tab = tid() | atom()
� Pattern = tuple()
� Match = [term()]

Matches the objects in the table Tab against the pattern Pattern.

A pattern is a term that may contain:

� bound parts (Erlang terms),

� ’ ’ which matches any Erlang term, and

� pattern variables: ’$N’ where N=0,1,...

109STDLIB

ets STDLIB Reference Manual

The function returns a list with one element for each matching object, where each
element is an ordered list of pattern variable bindings. An example:

> ets:match(T, ’$1’). % Matches every object in the table
[frufsen,dog,7g,fbrunte,horse,5g,fludde,dog,5g]
> ets:match(T, f’ ’,dog,’$1’g).
[[7],[5]]
> ets:match(T, f’ ’,cow,’$1’g).
[]

If the key is specified in the pattern, the match is very efficient. If the key is not
specified, i.e. if it is a variable or an underscore, the entire table must be searched. The
search time can be substantial if the table is very large.

On tables of the ordered set type, the result is in the same order as in a first/next
traversal.

match(Tab, Pattern, Limit) -> f[Match],Continuationg | ’$end of table’

Types:

� Tab = tid() | atom()
� Pattern = tuple()
� Match = [term()]
� Continuation = term()

Works like ets:match/2 but only returns a limited (Limit) number of matching
objects. The Continuation term can then be used in subsequent calls to ets:match/1
to get the next chunk of matching objects. This is a space efficient way to work on
objects in a table which is still faster than traversing the table object by object using
ets:first/1 and ets:next/1.

’$end of table’ is returned if the table is empty.

match(Continuation) -> f[Match],Continuationg | ’$end of table’

Types:

� Match = [term()]
� Continuation = term()

Continues a match started with ets:match/3. The next chunk of the size given in the
initial ets:match/3 call is returned together with a new Continuation that can be used
in subsequent calls to this function.

’$end of table’ is returned when there are no more objects in the table.

match delete(Tab, Pattern) -> true

Types:

� Tab = tid() | atom()
� Pattern = tuple()

Deletes all objects which match the pattern Pattern from the table Tab. See match/2
for a description of patterns.

match object(Tab, Pattern) -> [Object]

110 STDLIB

STDLIB Reference Manual ets

Types:

� Tab = tid() | atom()
� Pattern = Object = tuple()

Matches the objects in the table Tab against the pattern Pattern. See match/2 for a
description of patterns. The function returns a list of all objects which match the
pattern.

If the key is specified in the pattern, the match is very efficient. If the key is not
specified, i.e. if it is a variable or an underscore, the entire table must be searched. The
search time can be substantial if the table is very large.

On tables of the ordered set type, the result is in the same order as in a first/next
traversal.

match object(Tab, Pattern, Limit) -> f[Match],Continuationg | ’$end of table’

Types:

� Tab = tid() | atom()
� Pattern = tuple()
� Match = [term()]
� Continuation = term()

Works like ets:match object/2 but only returns a limited (Limit) number of
matching objects. The Continuation term can then be used in subsequent calls to
ets:match object/1 to get the next chunk of matching objects. This is a space efficient
way to work on objects in a table which is still faster than traversing the table object by
object using ets:first/1 and ets:next/1.

’$end of table’ is returned if the table is empty.

match object(Continuation) -> f[Match],Continuationg | ’$end of table’

Types:

� Match = [term()]
� Continuation = term()

Continues a match started with ets:match object/3. The next chunk of the size given
in the initial ets:match object/3 call is returned together with a new Continuation
that can be used in subsequent calls to this function.

’$end of table’ is returned when there are no more objects in the table.

member(Tab, Key) -> true | false

Types:

� Tab = tid() | atom()
� Key = term()

Works like lookup/2, but does not return the objects. The function returns true if one
or more elements in the table has the key Key, false otherwise.

new(Name, Options) -> tid()

Types:

� Name = atom()
� Options = [Option]

111STDLIB

ets STDLIB Reference Manual

� Option = Type | Access | named table | fkeypos,Posg
� Type = set | ordered set | bag | duplicate bag
� Access = public | protected | private
� Pos = int()

Creates a new table and returns a table identifier which can be used in subsequent
operations. The table identifier can be sent to other processes so that a table can be
shared between different processes within a node.

The parameter Options is a list of atoms which specifies table type, access rights, key
position and if the table is named or not. If one or more options are left out, the default
values are used. This means that not specifying any options ([]) is the same as
specifying [set,protected,fkeypos,1g].

� set The table is a set table - one key, one object, no order among objects. This is
the default table type.

� ordered set The table is a ordered set table - one key, one object, ordered in
Erlang term order, which is the order implied by the < and > operators. Tables of
this type have a somewhat different behavior in some situations than tables of the
other types.

� bag The table is a bag table which can have many objects, but only one instance of
each object, per key.

� duplicate bag The table is a duplicate bag table which can have many objects,
including multiple copies of the same object, per key.

� public Any process may read or write to the table.

� protected The owner process can read and write to the table. Other processes can
only read the table. This is the default setting for the access rights.

� private Only the owner process can read or write to the table.

� named table If this option is present, the name Name is associated with the table
identifier. The name can then be used instead of the table identifier in subsequent
operations.

� fkeypos,Posg Specfies which element in the stored tuples should be used as key.
By default, it is the first element, i.e. Pos=1. However, this is not always
appropriate. In particular, we do not want the first element to be the key if we
want to store Erlang records in a table.
Note that any tuple stored in the table must have at least Pos number of elements.

next(Tab, Key1) -> Key2 | ’$end of table’

Types:

� Tab = tid() | atom()
� Key1 = Key2 = term()

Returns the next key Key2, following the key Key1 in the table Tab. If the table is of the
ordered set type, the next key in Erlang term order is returned. If the table is of any
other type, the next key according to the table’s internal order is returned. If there is no
next key, ’$end of table’ is returned.

Use first/1 to find the first key in the table.

Unless a table of type set, bag or duplicate bag is protected using safe fixtable/2,
see below, a traversal may fail if concurrent updates are made to the table. If the table is

112 STDLIB

STDLIB Reference Manual ets

of type ordered set, the function returns the next key in order, even if the object does
no longer exist.

prev(Tab, Key1) -> Key2 | ’$end of table’

Types:

� Tab = tid() | atom()
� Key1 = Key2 = term()

Returns the previous key Key2, preceding the key Key1 according the Erlang term order
in the table Tab of the ordered set type. If the table is of any other type, the function
is synonymous to next/2. If there is no previous key, ’$end of table’ is returned.

Use last/1 to find the last key in the table.

rename(Tab, Name) -> Name

Types:

� Tab = Name = atom()

Renames the named table Tab to the new name Name. Afterwards, the old name can not
be used to access the table. Renaming an unnamed table has no effect.

safe fixtable(Tab, true|false) -> true | false

Types:

� Tab = tid() | atom()

Fixes a table of the set, bag or duplicate bag table type for safe traversal.

A process fixes a table by calling safe fixtable(Tab,true). The table remains fixed
until the process releases it by calling safe fixtable(Tab,false), or until the process
terminates.

If several processes fix a table, the table will remain fixed until all processes have
released it (or terminated). A reference counter is kept on a per process basis, and N
consecutive fixes requires N releases to actually release the table.

When a table is fixed, a sequence of first/1 and next/2 calls are guaranteed to
succeed even if objects are removed during the traversal. An example:

clean all with value(Tab,X) ->
safe fixtable(Tab,true),
clean all with value(Tab,X,ets:first(Tab)),
safe fixtable(Tab,false).

clean all with value(Tab,X,’$end of table’) ->
true;

clean all with value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[fKey,Xg] ->

ets:delete(Tab,Key);
->
true

end,
clean all with value(Tab,X,ets:next(Tab,Key)).

113STDLIB

ets STDLIB Reference Manual

Note that no deleted objects are actually removed from a fixed table until it has been
released. If a process fixes a table but never releases it, the memory used by the deleted
objects will never be freed. The performance of operations on the table will also
degrade significantly.

Use info/2 to retrieve information about which processes have fixed which tables. A
system with a lot of processes fixing tables may need a monitor which sends alarms
when tables have been fixed for too long.

Note that for tables of the ordered set type, safe fixtable/2 is not necessary as calls
to first/1 and next/2 will always succeed.

select(Tab, MatchSpec) -> [Object]

Types:

� Tab = tid() | atom()
� Object = tuple()
� MatchSpec = term()

Matches the objects in the table Tab using a match spec as described in ERTS users
guide. This is a more general call than the ets:match/2 and ets:match object/2 calls.
In its simplest forms the match spec’s look like this:

� MatchSpec = [MatchFunction]

� MatchFunction = fMatchHead, [Guard], [Result]g

� MatchHead = “Pattern as in ets:match”

� Guard = f“Guardtest name”, ...g

� Result = “Term construct”

This means that the match spec is always a list of one or more tuples (of arity 3). The
tuples first element should be a pattern as destcribed in the documentation of
ets:match/2. The second element of the tuple should be a list of 0 or more guard tests
(described below). The third element of the tuple should be a list containing a
description of the value to actually return. In almost all normal cases the list contains
exactly one term which fully describes the value to return for each object.

The return value is constructed using the “match variables” bound in the MatchHead or
using the special match variables ’$ ’ (the whole matching object) and ’$$’ (all
match variables in a list), so that the following <c>ets:match/2
expression:

ets:match(Tab,{’$1’,’$2’,’$3’})

is exactly equivalent to:

ets:select(Tab,[{{’$1’,’$2’,’$3’},[],[’$$’]}])

- and the following ets:match object/2 call:

ets:match_object(Tab,{’$1’,’$2’,’$1’})

is exactly equivalent to

ets:select(Tab,[{{’$1’,’$2’,’$1’},[],[’$_’]}])

Composite terms can be constructed in the Result part either by simply writing a list,
so that this code:

ets:select(Tab,[{{’$1’,’$2’,’$3’},[],[’$$’]}])

114 STDLIB

STDLIB Reference Manual ets

gives the same output as:

ets:select(Tab,[{{’$1’,’$2’,’$3’},[],[[’$1’,’$2’,’$3’]]}])

i.e. all the bound variables in the match head as a list. If tuples are to be constructed,
one has to write a tuple of arity 1 with the single element in the tuple beeing the tuple
one wants to construct (as an ordinary tuple could be mistaken for a Guard). Therefore
the following call:

ets:select(Tab,[{{’$1’,’$2’,’$1’},[],[’$_’]}])

gives the same output as:

ets:select(Tab,[{{’$1’,’$2’,’$1’},[],[{{’$1’,’$2’,’$3’}}]}])

- this syntax is equivalent to the syntax used in the trace patterns (see the dbg module
in the runtime tools application).

The Guard’s are constructed as tuples where the first element is the name of the test
(again, see the match spec documentation in ERTS users guide) and the rest of the
elements are the parameters of the test. To check for a specific type (say a list) of the
element bound to the match variable ’$1’, one would write the test as fis list,
’$1’g. If the test fails, the object in the table won’t match and the next MatchFunction
(if any) will be tried. Most guard tests present in erlang can be used, but only the new
versions prefixed is are allowed (like is float, is atom etc). An exact list of the
allowed guard tests is present in the match spec section of ERTS users guide.

The Guard section can also contain logic and arithmetic operations, which are written
with the same syntax as the guard tests (prefix notation), so that a guard test written in
erlang looking like this:

is_integer(X), is_integer(Y), X + Y < 4711

is expressed like this (X replaced with ’$1’ and Y with ’$2’):

[{is_integer, ’$1’}, {is_integer, ’$2’}, {’<’, {’+’, ’$1’,
’$2’}, 4711}]

A complete lost of the operators is present in the match spec section of ERTS users
guide.

select(Tab, MatchSpec, Limit) -> f[Match],Continuationg | ’$end of table’

Types:

� Tab = tid() | atom()
� Object = tuple()
� MatchSpec = term()
� Continuation = term()

Works like ets:select/2 but only returns a limited (Limit) number of matching
objects. The Continuation term can then be used in subsequent calls to ets:select/1
to get the next chunk of matching objects. This is a space efficient way to work on
objects in a table which is still faster than traversing the table object by object using
ets:first/1 and ets:next/1.

’$end of table’ is returned if the table is empty.

select(Continuation) -> f[Match],Continuationg | ’$end of table’

Types:

115STDLIB

ets STDLIB Reference Manual

� Match = [term()]
� Continuation = term()

Continues a match started with ets:select/3. The next chunk of the size given in the
initial ets:select/3 call is returned together with a new Continuation that can be
used in subsequent calls to this function.

’$end of table’ is returned when there are no more objects in the table.

slot(Tab, I) -> [Object] | ’$end of table’

Types:

� Tab = tid() | atom()
� I = int()
� Object = tuple()

Warning:
The function is deprecated and may be removed from future releases. Use
first/next or last/prev instead.

Returns all objects in the I:th slot of the table Tab. A table can be traversed by
repeatedly calling the function, starting with the first slot I=0 and ending when
’$end of table’ is returned. The function will fail with reason badarg if the I
argument is out of range.

Unless a table of type set, bag or duplicate bag is protected using safe fixtable/2,
see above, a traversal may fail if concurrent updates are made to the table. If the table is
of type ordered set, the function returns a list containing the I:th object in Erlang
term order.

tab2file(Tab, Filename) -> ok | ferror,Reasong

Types:

� Tab = tid() | atom()
� Filename = string() | atom()
� Reason = term()

Dumps the table Tab to the file Filename. The implementation of this function is not
efficient.

tab2list(Tab) -> [Object]

Types:

� Tab = tid() | atom()
� Object = tuple()

Returns a list of all objects in the table Tab.

test ms(Tuple, MatchSpec) -> fok, Resultg | ferror, Errorsg

Types:

� Tuple = tuple()

116 STDLIB

STDLIB Reference Manual ets

� MatchSpec = term()
� Result = term()
� Errors = [fwarning|error, string()g]

This function is a utility to test the match spec’s used in calls to ets:select/2. The
function both tests the MatchSpec for “syntactic” correctness and runs the match spec
against the object Tuple. If the match spec contains errors, the tuple ferror, Errorsg
is returned where Errors is a list of natural language descriptions of what was wrong
with the match spec. If the match spec is syntactically OK, the function returns
fok,Termg where Term is what would have been the result in a real ets:select/2 call
or false if the match spec does not match the object Tuple.

This is a useful debugging and test tool, especially when writing complicated
ets:select/2 calls.

to dets(Tab, DetsTab) -> Tab

Types:

� Tab = tid() | atom()
� DetsTab = atom()

Fills an already created/opened DETS table with the objects in the already opened ETS
table named Tab. The DETS table is emptied before the objects are inserted.

update counter(Tab, Key, fPos,Incrg) -> Result

update counter(Tab, Key, Incr) -> Result

Types:

� Tab = tid() | atom()
� Key = term()
� Pos = Incr = Result = int()

This functions provides an efficient way to update a counter, without the hassle of
having to look up an object, update the object by incrementing an element and insert
the resulting object into the table again.

It will destructively update the object with key Key in the table Tab by adding Incr to
the element at the Pos:th position. The new counter value is returned. If no position is
specified, the element directly following the key (<keypos>+1) is updated.

The function will fail with reason badarg if:

� the table is not of type set or ordered set,

� no object with the right key exists,

� the object has the wrong arity, or,

� the element to update is not an integer.

117STDLIB

file sorter STDLIB Reference Manual

file sorter
Erlang Module

The functions of this module sort terms on files, merge already sorted files, and check
files for sortedness. Chunks containing binary terms are read from a sequence of files,
sorted internally in memory and written on temporary files, which are merged
producing one sorted file as output. Merging is provided as an optimization; it is faster
when the files are already sorted, but it always works to sort instead of merge.

On a file, a term is represented by a header and a binary. Two options define the format
of terms on files:

� fheader, HeaderLengthg. HeaderLength determines the number of bytes
preceding each binary and containing the length of the binary in bytes. Default is
4. The order of the header bytes is defined as follows: if B is a binary containing a
header only, the size Size of the binary is calculated as
<<Size:HeaderLength/unit:8>> = B.

� fformat, Formatg. The format determines the function that is applied to binaries
in order to create the terms that will be sorted. The default value is binary term,
which is equivalent to funbinary to term/1. The value binary is equivalent to
fun(X) -> X end, which means that the binaries will be sorted as they are. This
is the fastest format. If Format is term, io:read/2 is called to read terms. In that
case only the default value of the header option is allowed. The format option
also determines what is written to the sorted output file: if Format is term then
io:format/3 is called to write each term, otherwise the binary prefixed by a
header is written. Note that the binary written is the same binary that was read;
the results of applying the Format function are thrown away as soon as the terms
have been sorted. Reading and writing terms using the io module is very much
slower than reading and writing binaries.

Other options are:

� forder, Orderg. The default is to sort terms in ascending order, but that can be
changed by the value descending or by giving an ordering function Fun. Fun(A,B)
should return true if A comes before B in the ordering, false otherwise. Using an
ordering function will slow down the sort considerably. The keysort, keymerge
and keycheck functions do not accept ordering functions.

� funique, bool()g. When sorting or merging files, only the first of a sequence of
terms that compare equal is output if this option is set to true. The default value
is false which implies that all terms that compare equal are output. When
checking files for sortedness, a check that no pair of consecutive terms compares
equal is done if this option is set to true.

118 STDLIB

STDLIB Reference Manual file sorter

� ftmpdir, TempDirectoryg. The directory where temporary files are put can be
chosen explicitly. The default, implied by the value "", is to put temporary files on
the same directory as the sorted output file. If output is a function (see below), the
directory returned by file:get cwd() is used instead. The names of temporary
files are derived from the pid doing the sort; a typical name would be
file sorter 0 28 0.17, where 17 is a sequence number. Existing files will be
overwritten. Temporary files are deleted unless some uncaught EXIT signal occurs.

� fcompressed, bool()g. Temporary files and the output file may be compressed.
The default value false implies that written files are not compressed. Regardless
of the value of the compressed option, compressed files can always be read. Note
that reading and writing compressed files is significantly slower than reading and
writing uncompressed files.

� fsize, Sizeg. By default approximately 512*1024 bytes read from files are sorted
internally. This option should rarely be needed.

� fno files, NoFilesg. By default 16 files are merged at a time. This option
should rarely be needed.

To summarize, here is the syntax of the options:

� Options = [Option] | Option

� Option = fheader, HeaderLengthg | fformat, Formatg | forder, Orderg
| funique, bool()g | ftmpdir, TempDirectoryg | fcompressed, bool()g
| fsize, Sizeg | fno files, NoFilesg

� HeaderLength = int() > 0

� Format = binary term | term | binary | FormatFun

� FormatFun = fun(Binary) -> Term

� Order = ascending | descending | OrderFun

� OrderFun = fun(Term, Term) -> bool()

� TempDirectory = "" | file name()

� Size = int() > 0

� NoFiles = int() > 1

As an alternative to sorting files, a function of one argument can be given as input.
When called with the argument read the function is assumed to return end of input
or fend of input, Valuegg when there is no more input (Value is explained below),
or fObjects, Fung, where Objects is a list of binaries or terms depending on the
format and Fun is a new input function. Any other value is immediately returned as
value of the current call to sort or keysort. Each input function will be called exactly
once, and should an error occur, the last function is called with the argument close, the
reply of which is ignored.

A function of one argument can be given as output. The results of sorting or merging
the input is collected in a non-empty sequence of variable length lists of binaries or
terms depending on the format. The output function is called with one list at a time,
and is assumed to return a new output function. Any other return value is immediately
returned as value of the current call to the sort or merge function. Each output function
is called exactly once. When some output function has been applied to all of the results
or an error occurs, the last function is called with the argument close, and the reply is
returned as value of the current call to the sort or merge function. If a function is given
as input and the last input function returns fend of input, Valueg, the function given

119STDLIB

file sorter STDLIB Reference Manual

as output will be called with the argument fvalue, Valueg. This makes it easy to
initiate the sequence of output functions with a value calculated by the input functions.

As an example, consider sorting the terms on a disk log file. A function that reads
chunks from the disk log and returns a list of binaries is used as input. The results are
collected in a list of terms.

sort(Log) ->
fok, g = disk log:open([fname,Logg, fmode,read onlyg]),
Input = input(Log, start),
Output = output([]),
Reply = file sorter:sort(Input, Output, fformat,termg),
ok = disk log:close(Log),
Reply.

input(Log, Cont) ->
fun(close) ->

ok;
(read) ->

case disk log:chunk(Log, Cont) of
ferror, Reasong ->

ferror, Reasong;
fCont2, Termsg ->

fTerms, input(Log, Cont2)g;
fCont2, Terms, Badbytesg ->

fTerms, input(Log, Cont2)g;
eof ->

end of input
end

end.

output(L) ->
fun(close) ->

lists:append(lists:reverse(L));
(Terms) ->

output([Terms | L])
end.

Further examples of functions as input and output can be found at the end of the
file sorter module; the term format is implemented with functions.

The possible values of Reason returned when an error occurs are:

� bad object, fbad object, FileNameg. Applying the format function failed for
some binary, or the key(s) could not be extracted from some term.

� fbad term, FileNameg. io:read/2 failed to read some term.

� ffile error, FileName, Reason2g. See file(3) for an explanation of Reason2.

� fpremature eof, FileNameg. End-of-file was encountered inside some binary
term.

� fnot a directory, FileNameg. The file supplied with the tmpdir option is not a
directory.

Types

120 STDLIB

STDLIB Reference Manual file sorter

Binary = binary()
FileName = file name()
FileNames = [FileName]
ICommand = read | close
IReply = end of input | fend of input, Valueg | f[Object], Infung | InputReply
Infun = fun(ICommand) -> IReply
Input = FileNames | Infun
InputReply = Term
KeyPos = int() > 0 | [int() > 0]
OCommand = fvalue, Valueg | [Object] | close
OReply = Outfun | OutputReply
Object = Term | Binary
Outfun = fun(OCommand) -> OReply
Output = FileName | Outfun
OutputReply = Term
Term = term()
Value = Term

Exports

sort(FileName) -> Reply

sort(Input, Output) -> Reply

sort(Input, Output, Options) -> Reply

Types:

� Reply = ok | ferror, Reasong | InputReply | OutputReply

Sorts terms on files.

sort(FileName) is equivalent to sort([FileName], FileName).

sort(Input, Output) is equivalent to sort(Input, Output, []).

keysort(KeyPos, FileName) -> Reply

keysort(KeyPos, Input, Output) -> Reply

keysort(KeyPos, Input, Output, Options) -> Reply

Types:

� Reply = ok | ferror, Reasong | InputReply | OutputReply

Sorts tuples on files. The sort is performed on the element(s) mentioned in KeyPos. If
two tuples compare equal on one element, next element according to KeyPos is
compared. The sort is stable.

keysort(N, FileName) is equivalent to keysort(N, [FileName], FileName).

keysort(N, Input, Output) is equivalent to keysort(N, Input, Output, []).

merge(FileNames, Output) -> Reply

merge(FileNames, Output, Options) -> Reply

Types:

� Reply = ok | ferror, Reasong | OutputReply

121STDLIB

file sorter STDLIB Reference Manual

Merges terms on files. Each input file is assumed to be sorted.

merge(FileNames, Output) is equivalent to merge(FileNames, Output, []).

keymerge(KeyPos, FileNames, Output) -> Reply

keymerge(KeyPos, FileNames, Output, Options) -> Reply

Types:

� Reply = ok | ferror, Reasong | OutputReply

Merges tuples on files. Each input file is assumed to be sorted on key(s).

keymerge(KeyPos, FileNames, Output) is equivalent to keymerge(KeyPos,
FileNames, Output, []).

check(FileName) -> Reply

check(FileNames, Options) -> Reply

Types:

� Reply = fok, [Result]g | ferror, Reasong
� Result = fFileName, TermPosition, Termg

� TermPosition = int() > 1

Checks files for sortedness. If a file is not sorted, the first out-of-order element is
returned. The first term on a file has position 1.

check(FileName) is equivalent to check([FileName], []).

keycheck(KeyPos, FileName) -> CheckReply

keycheck(KeyPos, FileNames, Options) -> Reply

Types:

� Reply = fok, [Result]g | ferror, Reasong
� Result = fFileName, TermPosition, Termg

� TermPosition = int() > 1

Checks files for sortedness. If a file is not sorted, the first out-of-order element is
returned. The first term on a file has position 1.

keycheck(KeyPos, FileName) is equivalent to keycheck(KeyPos, [FileName], []).

122 STDLIB

STDLIB Reference Manual filename

filename
Erlang Module

The module filename provides a number of useful functions for analyzing and
manipulating file names. These functions are designed so that the Erlang code can work
on many different platforms with different formats for file names. With file name is
meant all strings that can be used to denote a file. They can be short relative names like
foo.erl, very long absolute name which include a drive designator and directory names
like D:\usr/local\bin\erl/lib\tools\foo.erl, or any variations in between.

In Windows, all functions return file names with forward slashes only, even if the
arguments contain back slashes. Use the join/1 function to normalize a file name by
removing redundant directory separators.

Exports

absname(Filename) -> Absname

Types:

� Filename = string() |[string()] | atom()
� Absname = string()

Converts a relative Filename and returns an absolute name. No attempt is made to
create the shortest absolute name, because this can give incorrect results on file systems
which allow links.

Examples include:

Assume (for UNIX) current directory "/usr/local"
Assume (for WIN32) current directory "D:/usr/local"

(for UNIX): absname("foo") -> "/usr/local/foo"
(for WIN32): absname("foo") -> "D:/usr/local/foo"
(for UNIX): absname("../x") -> "/usr/local/../x"
(for WIN32): absname("../x") -> "D:/usr/local/../x"
(for UNIX): absname("/") -> "/"
(for WIN32): absname("/") -> "D:/"

absname(Filename, Directory) -> Absname

Types:

� Filename = string() |[string()] | atom()
� Directory = string()
� Absname = string()

123STDLIB

filename STDLIB Reference Manual

This function works like absname/1, except that the directory to which the file name
should be made relative is given explicitly in the Directory argument.

basename(Filename)

Types:

� Filename = string() |[string()] | atom()

Returns the part of the Filename after the last directory separator, or the Filename
itself if it has no separators.

Examples include:

basename("foo") -> "foo"
basename("/usr/foo") -> "foo"
basename("/") -> []

basename(Filename,Ext) -> string()

Types:

� Filename = Ext = string() | [string()] | atom()

Returns the last component of Filename with the extension Ext stripped. Use this
function if you want to to remove an extension which might, or might not, be there.
Use rootname(basename(Filename)) if you want to remove an extension that exists,
but you are not sure which one it is.

Examples include:

basename("~/src/kalle.erl", ".erl") -> "kalle"
basename("~/src/kalle.beam", ".erl") -> "kalle.beam"
basename("~/src/kalle.old.erl", ".erl") -> "kalle.old"
rootname(basename("~/src/kalle.erl")) -> "kalle"
rootname(basename("~/src/kalle.beam")) -> "kalle"

dirname(Filename) -> string()

Types:

� Filename = string() | [string()] | atom()

Returns the directory part of Filename.

Examples include:

dirname("/usr/src/kalle.erl") -> "/usr/src"
dirname("kalle.erl") -> "."
On Win32:
filename:dirname("\\usr\\src/kalle.erl") -> "/usr/src"

extension(Filename) -> string() | []

Types:

� Filename = string() | [string()] | atom()

Given a file name string Filename, this function returns the file extension including the
period. Returns an empty list if there is no extension.

Examples include:

124 STDLIB

STDLIB Reference Manual filename

extension("foo.erl") -> ".erl"
extension("beam.src/kalle") -> []

join(Components) -> string()

Types:

� Components = [string()]

Joins a list of file name Components with directory separators. If one of the elements in
the Components list includes an absolute path, for example “/xxx”, the preceding
elements, if any, are removed from the result.

The result of the join function is “normalized”:

� There are no redundant directory separators.

� In Windows, all directory separators are forward slashes and the drive letter is in
lower case.

Examples include:

join("/usr/local", "bin") -> "/usr/local/bin"
join(["/usr", "local", "bin"]) -> "/usr/local/bin"
join(["a/b///c/"] -> "a/b/c"
join(["B:a\\b///c/"] -> "b:a/b/c" % On Windows only

join(Name1, Name2) -> string()

Types:

� Name1 = Name2 = string()

Joins two file name components with directory separators. Equivalent to
join([Name1,Name2]).

nativename(Path) -> string()

Types:

� Path = string()

Converts a filename in Path to a form accepted by the command shell and native
applications on the current platform. On Windows, forward slashes will be converted to
backward slashes. On all platforms, the name will be normalized as done by join/1.

Example:

(on UNIX) filename:nativename("/usr/local/bin/") -> "/usr/local/bin"
(on Win32) filename:nativename("/usr/local/bin/") -> "\\usr\\local\\bin"

pathtype(Path) -> absolute | relative | volumerelative

Returns one of absolute, relative, or volumerelative.

absolute The path name refers to a specific file on a specific volume.
Examples include:

125STDLIB

filename STDLIB Reference Manual

on Unix
/usr/local/bin/
on Windows
D:/usr/local/bin

relative The path name is relative to the current working directory on the current
volume.
Example:

foo/bar, ../src

volumerelative The path name is relative to the current working directory on a
specified volume, or it is a specific file on the current working volume.
Examples include:

In Windows
D:bar.erl, /bar/foo.erl
/temp

rootname(Filename) -> string()

rootname(Filename, Ext) -> string()

Types:

� Filename = Ext = string() | [string()] | atom()

rootname/1 returns all characters in Filename, except the extension.

rootname/2 works as rootname/1, except that the extension is removed only if it is Ext.

Examples include:

rootname("/beam.src/kalle") -> "/beam.src/kalle"
rootname("/beam.src/foo.erl") -> "/beam.src/foo"
rootname("/beam.src/foo.erl",".erl") -> "/beam.src/foo"
rootname("/beam.src/foo.beam",".erl") -> "/beam.src/foo.beam"

split(Filename) -> Components

Types:

� Filename = string() | [string()] | atom()
� Components = [string()]

Returns a list whose elements are the path components of Filename.

Examples include:

split("/usr/local/bin") -> ["/", "usr", "local", "bin"]
split("foo/bar") -> ["foo", "bar"]
split("a:\\msdev\\include") -> ["a:/", "msdev", "include"]

find src(Module) -> fSourceFile, Optionsg

find src(Module, Rules) -> fSourceFile, Optionsg

Types:

� Module = atom() | string()
� SourceFile = string()
� Options = [CompilerOption]

126 STDLIB

STDLIB Reference Manual filename

� CompilerOption = fi, string()g | foutdir, string()g | fd, atom()g

Finds the source file name and compilation options for a compiled module. The result
can be fed to compile:file/2 in order to compile the file again.

The Module argument, which can be a string or an atom, specifies either the module
name or the path to the source code, with or without the “.erl” extension. In either case,
the module must be known by the code manager, i.e. code:which/1 must succeed.

Rules describe how the source directory is found, when the object code directory is
known. Each rule is of the form fBinSuffix, SourceSuffixg and is interpreted as
follows: If the end of the directory name where the object is located matches
BinSuffix, then the suffix of the directory name is replaced by SourceSuffix. If the
source file is found in the resulting directory, then the function returns that location
together with Options. Otherwise, the next rule is tried, and so on.

The function returns fSourceFile, Optionsg. SourceFile is the absolute path to the
source file without the “.erl” extension. Options include the options which are
necessary to compile the file with compile:file/2, but excludes options such as
report or verbose which do not change the way code is generated. The paths in the
foutdir, Pathg and fi, Pathg options are guaranteed to be absolute.

127STDLIB

gb sets STDLIB Reference Manual

gb sets
Erlang Module

An implementation of ordered sets using Prof. Arne Andersson’s General Balanced
Trees. This can be much more efficient than using ordered lists, for larger sets, but
depends on the application. See notes below for details.

Complexity note

The complexity on set operations is bounded by either O(|S|) or O(|T| * log(|S|)),
where S is the largest given set, depending on which is fastest for any particular function
call. For operating on sets of almost equal size, this implementation is about 3 times
slower than using ordered-list sets directly. For sets of very different sizes, however, this
solution can be arbitrarily much faster; in practical cases, often between 10 and 100
times. This implementation is particularly suited for accumulating elements a few at a
time, building up a large set (more than 100-200 elements), and repeatedly testing for
membership in the current set.

As with normal tree structures, lookup (membership testing), insertion and deletion
have logarithmic complexity.

Exports

empty()

Returns new, empty set.

Alias: new(), for compatibility with ‘sets’.

is empty(S)

Returns ’true’ if S is an empty set, and ’false’ otherwise.

size(S)

Returns the number of nodes in the set as an integer. Returns 0 (zero) if the set is empty.

singleton(X)

Returns a set containing only the element X.

is member(X, S)

128 STDLIB

STDLIB Reference Manual gb sets

Returns ‘true’ if element X is a member of set S, and ‘false’ otherwise.

Alias: is element(), for compatibility with ‘sets’.

insert(X, S)

Inserts element X into set S, returns the new set. Assumes that the element is not
present in S.

add(X, S)

Adds element X to set S, returns the new set. If X is already an element in S, nothing is
changed.

Alias: add element(), for compatibility with ‘sets’.

delete(X, S)

Removes element X from set S, returns new set. Assumes that the element exists in the
set.

Alias: del element(), for compatibility with ‘sets’.

balance(S)

Rebalances the tree representation of S. Note that this is rarely necessary, but may be
motivated when a large number of elements have been deleted from the tree without
further insertions. Rebalancing could then be forced in order to minimise lookup times,
since deletion only does not rebalance the tree.

union(S1, S2)

Returns a new set that contains each element that is in either S1 or S2 or both, and no
other elements.

union(Ss)

Returns a new set that contains each element that is in at least one of the sets in the list
Ss, and no other elements.

intersection(S1, S2)

Returns a new set that contains each element that is in both S1 and S2, and no other
elements.

intersection(Ss)

Returns a new set that contains each element that is in all of the sets in the list Ss, and
no other elements.

difference(S1, S2)

Returns a new set that contains each element in S1 that is not also in S2, and no other
elements.

Alias: subtract(), for compatibility with ‘sets’.

is subset(S1, S2)

129STDLIB

gb sets STDLIB Reference Manual

Returns ‘true’ if each element in S1 is also a member of S2, and ‘false’ otherwise.

to list(S)

Returns an ordered list of all elements in set S. The list never contains duplicates (of
course).

from list(List)

Creates a set containing all elements in List, where List may be unordered and contain
duplicates.

from ordset(L)

Turns an ordered-set list L into a set. The list must not contain duplicates.

take smallest(S)

Returns fX, S1g, where X is the smallest element in set S, and S1 is the set S with
element X deleted. Assumes that the set S is nonempty.

iterator(S)

Returns an iterator that can be used for traversing the entries of set S; see ‘next’. The
implementation of this is very efficient; traversing the whole set using ‘next’ is only
slightly slower than getting the list of all elements using ‘to list’ and traversing that. The
main advantage of the iterator approach is that it does not require the complete list of
all elements to be built in memory at one time.

next(T)

Returns fX, T1g where X is the smallest element referred to by the iterator T, and T1 is
the new iterator to be used for traversing the remaining elements, or the atom ‘none’ if
no elements remain.

filter(P, S)

Filters set S using predicate function P. Included for compatibility with ‘sets’.

fold(F, A, S)

Folds function F over set S with A as the initial accumulator. Included for compatibility
with ‘sets’.

is set(S)

Returns ’true’ if S appears to be a set, and ’false’ otherwise. Not recommended;
included for compatibility with ‘sets’.

SEE ALSO

gb trees(3) [page 131], ordsets(3) [page 186], sets(3) [page 202]

130 STDLIB

STDLIB Reference Manual gb trees

gb trees
Erlang Module

An efficient implementation of Prof. Arne Andersson’s General Balanced Trees. These
have no storage overhead compared to unbalaced binary trees, and their performance is
in general better than AVL trees.

Data structure

Data structure:

- {Size, Tree}, where ‘Tree’ is composed of nodes of the form:
- {Key, Value, Smaller, Bigger}, and the "empty tree" node:
- nil.

There is no attempt to balance trees after deletions. Since deletions don’t increase the
height of a tree, this should be OK.

Original balance condition h(T) <= ceil(c * log(|T|)) has been changed to the similar
(but not quite equivalent) condition 2 ^ h(T) <= |T| ^ c. This should also be OK.

Performance is comparable to the AVL trees in the Erlang book (and faster in general
due to less overhead); the difference is that deletion works for these trees, but not for
the book’s trees. Behaviour is logaritmic (as it should be).

Exports

empty()

Returns a new, empty tree.

is empty(T)

Returns ’true’ if T is an empty tree, and ’false’ otherwise.

size(T)

Returns the number of nodes in the tree as an integer. Returns 0 (zero) if the tree is
empty.

lookup(X, T)

Looks up key X in tree T; returns fvalue, Vg, or ‘none’ if the key is not present.

get(X, T)

131STDLIB

gb trees STDLIB Reference Manual

Retreives the value stored with key X in tree T. Assumes that the key is present in the
tree, crashes otherwise.

insert(X, V, T)

Inserts key X with value V into tree T; returns the new tree. Assumes that the key is
not present in the tree, crashes otherwise.

update(X, V, T)

Updates key X to value V in tree T; returns the new tree. Assumes that the key is
present in the tree.

enter(X, V, T)

Inserts key X with value V into tree T if the key is not present in the tree, otherwise
updates key X to value V in T. Returns the new tree.

delete(X, T)

Removes key X from tree T; returns new tree. Assumes that the key is present in the
tree, crashes otherwise.

delete any(X, T)

Removes key X from tree T if the key is present in the tree, otherwise does nothing;
returns new tree.

balance(T)

Rebalances tree T. Note that this is rarely necessary, but may be motivated when a large
number of entries have been deleted from the tree without further insertions.
Rebalancing could then be forced in order to minimise lookup times, since deletion only
does not rebalance the tree.

is defined(X, T)

Returns ‘true’ if key X is present in tree T, and ‘false’ otherwise.

keys(T)

Returns an ordered list of all keys in tree T.

values(T)

Returns a list of all values in tree T.

to list(T)

Returns an ordered list of fKey, Valueg pairs for all keys in tree T.

from orddict(L)

turns an ordered list L of fKey, Valueg pairs into a tree. The list must not contain
duplicate keys.

132 STDLIB

STDLIB Reference Manual gb trees

take smallest(T)

Returns fX, V, T1g, where X is the smallest key in tree T, V is the value associated with
X in T, and T1 is the tree T with key X deleted. Assumes that the tree T is nonempty.

iterator(T)

Returns an iterator that can be used for traversing the entries of tree T; see ‘next’. The
implementation of this is very efficient; traversing the whole tree using ‘next’ is only
slightly slower than getting the list of all elements using ‘to list’ and traversing that. The
main advantage of the iterator approach is that it does not require the complete list of
all elements to be built in memory at one time.

next(S)

Returns fX, V, S1g where X is the smallest key referred to by the iterator S, and S1 is
the new iterator to be used for traversing the remaining entries, or the atom ‘none’ if no
entries remain.

SEE ALSO

gb sets(3) [page 128], dict(3) [page 71],

133STDLIB

gen event STDLIB Reference Manual

gen event
Erlang Module

A behaviour module for implementing event handling functionality. The OTP event
handling model consists of a generic event manager process with an arbitrary number of
event handlers which are added and deleted dynamically.

An event manager implemented using this module will have a standard set of interface
functions and include functionality for tracing and error reporting. It will also fit into an
OTP supervision tree. Refer to OTP Design Principles for more information.

Each event handler is implemented as a callback module exporting a pre-defined set of
functions. The relationship between the behaviour functions and the callback functions
can be illustrated as follows:

gen event module Callback module
--------------- -------------
gen event:start -----> -

gen event:add handler
gen event:add suphandler -----> Module:init/1

gen event:notify
gen event:sync notify -----> Module:handle event/2

gen event:call -----> Module:handle call/2

- -----> Module:handle info/2

gen event:delete handler -----> Module:terminate/2

gen event:swap handler
gen event:swap sup handler -----> Module1:terminate/2

Module2:init/1

gen event:which handlers -----> -

gen event:stop -----> Module:terminate/2

- -----> Module:code change/3

Since each event handler is one callback module, an event manager will have several
callback modules which are added and deleted dynamically. Therefore gen event is
more tolerant of callback module errors than the other behaviours. If a callback function
for an installed event handler fails with Reason, or returns a bad value Term, the event
manager will not fail. It will delete the event handler by calling the callback function

134 STDLIB

STDLIB Reference Manual gen event

Module:terminate/2 (see below), giving as argument ferror,f’EXIT’,Reasongg or
ferror,Termg, respectively. No other event handler will be affected.

The sys module can be used for debugging an event manager.

Note that an event manager does trap exit signals automatically.

Unless otherwise stated, all functions in this module fail if the specified event manager
does not exist or if bad arguments are given.

Exports

start() -> Result

start(EventMgrName) -> Result

start link() -> Result

start link(EventMgrName) -> Result

Types:

� EventMgrName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Result = fok,Pidg | ferror,falready started,Pidgg
� Pid = pid()

Creates an event manager.

An event manager started using start link is linked to the calling process. This
function must be used if the event manager is included in a supervision tree. An event
manager started using start is not linked to the calling process.

If EventMgrName=flocal,Nameg, the event manager is registered locally as Name using
register/2. If EventMgrName=fglobal,Nameg, the event manager is registered globally
as Name using global:register name/2. If no name is provided, the event manager is
not registered.

If the event manager is successfully created the function returns fok,Pidg, where Pid is
the pid of the event manager. If there already exists a process with the specified
EventMgrName the function returns ferror,falready started,Pidgg, where Pid is
the pid of that process.

add handler(EventMgrRef, Handler, Args) -> Result

Types:

� EventMgr = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args = term()
� Result = ok | f’EXIT’,Reasong | term()
� Reason = term()

Adds a new event handler to the event manager EventMgrRef. The event manager will
call Module:init/1 to initiate the event handler and its internal state.

EventMgrRef can be:

135STDLIB

gen event STDLIB Reference Manual

� the pid,

� Name, if the event manager is locally registered,

� fName,Nodeg, if the event manager is locally registered at another node, or

� fglobal,Nameg, if the event manager is globally registered.

Handler is the name of the callback module Module or a tuple fModule,Idg, where Id
is any term. The fModule,Idg representation makes it possible to identify a specific
event handler when there are several event handlers using the same callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If Module:init/1 returns a correct value, the event manager adds the event handler and
this function returns ok. If Module:init/1 fails with Reason or returns an unexpected
value Term, the event handler is ignored and this function returns f’EXIT’,Reasong or
Term, respectively.

add sup handler(EventMgrRef, Handler, Args) -> Result

Types:

� EventMgr = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args = term()
� Result = ok | f’EXIT’,Reasong | term()
� Reason = term()

Adds a new event handler in the same way as add handler/3 but will also supervise the
connection between the event handler and the calling process.

� If the calling process later terminates with Reason, the event manager will delete
the event handler by calling Module:terminate/2with fstop,Reasong as
argument.

� If the event handler later is deleted, the event manager sends a
messagefgen event EXIT,Handler,Reasong to the calling process. Reason is one
of the following:

– normal, if the event handler has been removed due to a call to
delete handler/3, or remove handler has been returned by a callback
function (see below).

– shutdown, if the event handler has been removed because the event manager
is terminating.

– fswapped,NewHandler,Pidg, if the process Pid has replaced the event
handler with another event handler NewHandler using a call to
swap handler/3 or swap sup handler/3.

– a term, if the event handler is removed due to an error. Which term depends
on the error.

See add handler/3 for a description of the arguments and return values.

notify(EventMgrRef, Event) -> ok

sync notify(EventMgrRef, Event) -> ok

136 STDLIB

STDLIB Reference Manual gen event

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Event = term()

Sends an event notification to the event manager EventMgrRef. The event manager will
call Module:handle event/2 for each installed event handler to handle the event.

notify is asynchronous and will return immediately after the event notification has
been sent. sync notify is synchronous in the sense that it will return ok after the event
has been handled by all event handlers.

See add handler/3 for a description of EventMgrRef.

Event is an arbitrary term which is passed as one of the arguments to
Module:handle event/2.

notify will not fail even if the specified event manager does not exist, unless it is
specified as Name.

call(EventMgrRef, Handler, Request) -> Result

call(EventMgrRef, Handler, Request, Timeout) -> Result

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()
� Request = term()
� Timeout = int()>0 | infinity
� Result = Reply | ferror,Errorg
� Reply = term()
� Error = bad module | f’EXIT’,Reasong | term()
� Reason = term()

Makes a synchronous call to the event handler Handler installed in the event manager
EventMgrRef by sending a request and waiting until a reply arrives or a timeout occurs.
The event manager will call Module:handle call/2 to handle the request.

See add handler/3 for a description of EventMgrRef and Handler.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle call/2.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply
is received within the specified time, the function call fails.

The return value Reply is defined in the return value of Module:handle call/2. If the
specified event handler is not installed, the function returns ferror,bad moduleg. If
the callback function fails with Reason or returns an unexpected value Term, this
function returns ferror,f’EXIT’,Reasongg or ferror,Termg, respectively.

delete handler(EventMgrRef, Handler, Args) -> Result

Types:

137STDLIB

gen event STDLIB Reference Manual

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args = term()
� Result = term() | ferror,module not foundg | f’EXIT’,Reasong
� Reason = term()

Deletes an event handler from the event manager EventMgrRef. The event manager
will call Module:terminate/2 to terminate the event handler.

See add handler/3 for a description of EventMgrRef and Handler.

Args is an arbitrary term which is passed as one of the arguments to
Module:terminate/2.

The return value is the return value of Module:terminate/2. If the specified event
handler is not installed, the function returns ferror,module not foundg. If the
callback function fails with Reason, the function returns f’EXIT’,Reasong.

swap handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) -> Result

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler1 = Handler2 = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args1 = Args2 = term()
� Result = ok | ferror,Errorg
� Error = f’EXIT’,Reasong | term()
� Reason = term()

Replaces an old event handler with a new event handler in the event manager
EventMgrRef.

See add handler/3 for a description of the arguments.

First the old event handler Handler1 is deleted. The event manager calls
Module1:terminate(Args1, ...), where Module1 is the callback module of
Handler1, and collects the return value.

Then the new event handler Handler2 is added and initiated by calling
Module2:init(fArgs2,Termg), where Module2 is the callback module of Handler2 and
Term the return value of Module1:terminate/2. This makes it possible to transfer
information from Handler1 to Handler2.

The new handler will be added even if the the specified old event handler is not installed
in which case Term=error, or if Module1:terminate/2 fails with Reason in which case
Term=f’EXIT’,Reasong. The old handler will be deleted even if Module2:init/1 fails.

If there was a supervised connection between Handler1 and a process Pid, there will be
a supervised connection between Handler2 and Pid instead.

If Module2:init/1 returns a correct value, this function returns ok. If Module2:init/1
fails with Reason or returns an unexpected value Term, this this function returns
ferror,f’EXIT’,Reasongg or ferror,Termg, respectively.

138 STDLIB

STDLIB Reference Manual gen event

swap sup handler(EventMgrRef, fHandler1,Args1g, fHandler2,Args2g) -> Result

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler1 = Handler 2 = Module | fModule,Idg
� Module = atom()
� Id = term()
� Args1 = Args2 = term()
� Result = ok | ferror,Errorg
� Error = f’EXIT’,Reasong | term()
� Reason = term()

Replaces an event handler in the event manager EventMgrRef in the same way as
swap handler/3 but will also supervise the connection between Handler2 and the
calling process.

See swap handler/3 for a description of the arguments and return values.

which handlers(EventMgrRef) -> [Handler]

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Handler = Module | fModule,Idg
� Module = atom()
� Id = term()

Returns a list of all event handlers installed in the event manager EventMgrRef.

See add handler/3 for a description of EventMgrRef and Handler.

stop(EventMgrRef) -> ok

Types:

� EventMgrRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()

Terminates the event manager EventMgrRef. Before terminating, the event manager
will call Module:terminate(stop,...) for each installed event handler.

See add handler/3 for a description of the argument.

CALLBACK FUNCTIONS

The following functions should be exported from a gen event callback module.

139STDLIB

gen event STDLIB Reference Manual

Exports

Module:init(InitArgs) -> fok,Stateg

Types:

� InitArgs = Args | fArgs,Termg

� Args = Term = term()
� State = term()

Whenever a new event handler is added to an event manager, this function is called to
initialize the event handler.

If the event handler is added due to a call to gen event:add handler/3 or
gen event:add sup handler/3, InitArgs is the Args argument of these functions.

If the event handler is replacing another event handler due to a call to
gen event:swap handler/3 or gen event:swap sup handler/3, or due to a swap
return tuple from one of the other callback functions, InitArgs is a tuple fArgs,Termg
where Args is the argument provided in the function call/return tuple and Term is the
result of terminating the old event handler, see gen event:swap handler/3.

The function should return fok,Stateg where State is the initial internal state of the
event handler.

Module:handle event(Event, State) -> Result

Types:

� Event = term()
� State = term()
� Result = fok,NewStateg
� | fswap handler,Args1,NewState,Handler2,Args2g | remove handler
� NewState = term()
� Args1 = Args2 = term()
� Handler2 = Module2 | fModule2,Idg
� Module2 = atom()
� Id = term()

Whenever an event manager receives an event sent using gen event:notify/2 or
gen event:sync notify/2, this function is called for each installed event handler to
handle the event.

Event is the Event argument of notify/sync notify.

State is the internal state of the event handler.

If the function returns fok,NewStateg the event handler will remain in the event
manager with the possible updated internal state NewState.

If the function returns fswap handler,Args1,NewState,Handler2,Args2g the event
handler will be replaced by Handler2 by first calling
Module:terminate(Args1,NewState) and then Module2:init(fArgs2,Termg) where
Term is the return value of Module:terminate/2. See gen event:swap handler/3 for
more information.

If the function returns remove handler the event handler will be deleted by calling
Module:terminate(remove handler,State).

140 STDLIB

STDLIB Reference Manual gen event

Module:handle call(Request, State) -> Result

Types:

� Request = term()
� State = term()
� Result = fok,Reply,NewStateg
� | fswap handler,Reply,Args1,NewState,Handler2,Args2g
� | fremove handler, Replyg
� Reply = term()
� NewState = term()
� Args1 = Args2 = term()
� Handler2 = Module2 | fModule2,Idg
� Module2 = atom()
� Id = term()

Whenever an event manager receives a request sent using gen event:call/3,4, this
function is called for the specified event handler to handle the request.

Request is the Request argument of call.

State is the internal state of the event handler.

The return values are the same as for handle event/2 except they also contain a term
Reply which is the reply given back to the client as the return value of call.

Module:handle info(Info, State) -> Result

Types:

� Info = term()
� State = term()
� Result = fok,NewStateg
� | fswap handler,Args1,NewState,Handler2,Args2g | remove handler
� NewState = term()
� Args1 = Args2 = term()
� Handler2 = Module2 | fModule2,Idg
� Module2 = atom()
� Id = term()

This function is called for each installed event handler when an event manager receives
any other message than an event or a synchronous request (or a system message).

Info is the received message.

See Module:handle event/2 for a description of State and possible return values.

Module:terminate(Arg, State) -> term()

Types:

� Arg = Args | fstop,Reasong | stop | remove handler
� | ferror,f’EXIT’,Reasongg | ferror,Termg

� Args = Reason = Term = term()

141STDLIB

gen event STDLIB Reference Manual

Whenever an event handler is deleted from an event manager, this function is called. It
should be the opposite of Module:init/1 and do any necessary cleaning up.

If the event handler is deleted due to a call to gen event:delete handler,
gen event:swap handler/3 or gen event:swap sup handler/3, Arg is the Args
argument of this function call.

Arg=fstop,Reasong if the event handler has a supervised connection to a process
which has terminated with reason Reason.

Arg=stop if the event handler is deleted because the event manager is terminating.

Arg=remove handler if the event handler is deleted because another callback function
has returned remove handler or fremove handler,Replyg.

Arg=ferror,Termg if the event handler is deleted because a callback function returned
an unexpected value Term, or Arg=ferror,f’EXIT’,Reasongg if a callback function
failed.

State is the internal state of the event handler.

The function may return any term. If the event handler is deleted due to a call to
gen event:delete handler, the return value of that function will be the return value
of this function. If the event handler is to be replaced with another event handler due
to a swap, the return value will be passed to the init function of the new event handler.
Otherwise the return value is ignored.

Module:code change(OldVsn, State, Extra) -> fok, NewStateg

Types:

� OldVsn = undefined | term()
� State = NewState = term()
� Extra = term()

This function is called for each installed event handler they should update the internal
state due to code replacement, i.e. when the instruction
fupdate,Module,Change,PrePurge,PostPurge,Moduleswhere
Change=fadvanced,Extrag has been given to the release handler. See SASL User’s
Guide for more information.

OldVsn is the vsn attribute of the old version of the callback module Module, or
undefined if no such attribute is defined.

State is the internal state of the event handler.

Extra is the same as in the fadvanced,Extrag part of the update instruction.

The function should return fok,NewStateg, where NewState is the updated internal
state.

SEE ALSO

supervisor(3), sys(3)

142 STDLIB

STDLIB Reference Manual gen fsm

gen fsm
Erlang Module

A behaviour module for implementing a finite state machine. A generic finite state
machine process (gen fsm) implemented using this module will have a standard set of
interface functions and include functionality for tracing and error reporting. It will also
fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen fsm assumes all specific parts to be located in a callback module exporting a
pre-defined set of functions. The relationship between the behaviour functions and the
callback functions can be illustrated as follows:

gen fsm module Callback module
-------------- ---------------
gen fsm:start link -----> Module:init/1

gen fsm:send event -----> Module:StateName/2

gen fsm:send all state event -----> Module:handle event/3

gen fsm:sync send event -----> Module:StateName/3

gen fsm:sync send all state event -----> Module:handle sync event/4

- -----> Module:handle info/3

- -----> Module:terminate/3

- -----> Module:code change/4

If a callback function fails or returns a bad value, the gen fsm will terminate.

The sys module can be used for debugging a gen fsm.

Note that a gen fsm does not trap exit signals automatically, this must be explicitly
initiated in the callback module.

Unless otherwise stated, all functions in this module fail if the specified gen fsm does
not exist or if bad arguments are given.

143STDLIB

gen fsm STDLIB Reference Manual

Exports

start(Module, Args, Options) -> Result

start(FsmName, Module, Args, Options) -> Result

start link(Module, Args, Options) -> Result

start link(FsmName, Module, Args, Options) -> Result

Types:

� FsmName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Module = atom()
� Args = term()
� Options = [Option]
� Option = fdebug,Dbgsg | ftimeout,Timeg | fspawn opt,SOptsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics
� | flog to file,FileNameg | finstall,fFunc,FuncStategg
� SOpts = [term()]
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a gen fsm process which calls Module:init/1 to initialize. To ensure a
synchronized start-up procedure, this function does not return until Module:init/1 has
returned.

A gen fsm started using start link is linked to the calling process, this function must
be used if the gen fsm is included in a supervision tree. A gen fsm started using start is
not linked to the calling process.

If FsmName=flocal,Nameg, the gen fsm is registered locally as Name using register/2.
If FsmName=fglobal,Nameg, the gen fsm is registered globally as Name using
global:register name/2. If no name is provided, the gen fsm is not registered.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the option ftimeout,Timeg is present, the gen fsm is allowed to spend Time
milliseconds initializing or it will be terminated and the start function will return
ferror,timeoutg.

If the option fdebug,Dbgsg is present, the corresponding sys function will be called for
each item in Dbgs. Refer to sys(3) for more information.

If the option fspawn opt,SOptsg is present, SOpts will be passed as option list to the
spawn opt BIF which is used to spawn the gen fsm process. Refer to erlang(3) for
information about the spawn opt options.

If the gen fsm is successfully created and initialized the function returns fok,Pidg,
where Pid is the pid of the gen fsm. If there already exists a process with the specified
FsmName, the function returns ferror,falready started,Pidgg where Pid is the pid
of that process.

If Module:init/1 fails with Reason, the function returns ferror,Reasong. If
Module:init/1 returns fstop,Reasong or ignore, the process is terminated and the
function returns ferror,Reasong or ignore, respectively.

144 STDLIB

STDLIB Reference Manual gen fsm

send event(FsmRef, Event) -> ok

Types:

� FsmRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Event = term()

Sends an event asynchronously to the gen fsm FsmRef and returns ok immediately. The
gen fsm will call Module:StateName/2 to handle the event, where StateName is the
name of the current state of the gen fsm.

FsmRef can be:

� the pid,

� Name, if the gen fsm is locally registered,

� fName,Nodeg, if the gen fsm is locally registered at another node, or

� fglobal,Nameg, if the gen fsm is globally registered.

Event is an arbitrary term which is passed as one of the arguments to
Module:StateName/2.

send all state event(FsmRef, Event) -> ok

Types:

� FsmRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Event = term()

Sends an event asynchronously to the gen fsm FsmRef and returns ok immediately. The
gen fsm will call Module:handle event/3 to handle the event.

See send event/2 for a description of the arguments.

The difference between send event and send all state event is which callback
function is used to handle the event. This function is useful when sending events that
are handled the same way in every state, as only one handle event clause is needed to
handle the event instead of one clause in each state name function.

sync send event(FsmRef, Event) -> Reply

sync send event(FsmRef, Event, Timeout) -> Reply

Types:

� FsmRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Event = term()
� Timeout = int()>0 | infinity
� Reply = term()

145STDLIB

gen fsm STDLIB Reference Manual

Sends an event to the gen fsm FsmRef and waits until a reply arrives or a timeout
occurs. The gen fsm will call Module:StateName/3 to handle the event, where
StateName is the name of the current state of the gen fsm.

See send event/2 for a description of FsmRef and Event.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply
is received within the specified time, the function call fails.

The return value Reply is defined in the return value of Module:StateName/3.

In the case where the gen fsm terminates during the handling of the event and the caller
is linked to the gen fsm and trapping exits, the exit message is removed from the caller’s
receive queue before the function call fails.
This behaviour is retained for backwards compatibility only and may change in the
future. Note that if the gen fsm crashes in between calls, a linked process must take care
of the exit message anyway.
Warning: Under certain circumstances (e.g. FsmRef = fName,Nodeg, and Node goes
down) the exit message cannot be removed.

sync send all state event(FsmRef, Event) -> Reply

sync send all state event(FsmRef, Event, Timeout) -> Reply

Types:

� FsmRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Event = term()
� Timeout = int()>0 | infinity
� Reply = term()

Sends an event to the gen fsm FsmRef and waits until a reply arrives or a timeout
occurs. The gen fsm will call Module:handle event/3 to handle the event.

See send event/2 for a description of FsmRef and Event. See sync send event/3 for a
description of Timeout and Reply.

See send all state event/2 for a discussion about the difference between
sync send event and sync send all state event.

reply(Caller, Reply) -> true

Types:

� Caller - see below
� Reply = term()

This function can be used by a gen fsm to explicitly send a reply to a client process that
called sync send event or sync send all state event, when the reply cannot be
defined in the return value of Module:State/3 or Module:handle sync event/4.

Caller must be the From argument provided to the callback function. Reply is an
arbitrary term, which will be given back to the client as the return value of
sync send event or sync send all state event.

146 STDLIB

STDLIB Reference Manual gen fsm

CALLBACK FUNCTIONS

The following functions should be exported from a gen fsm callback module.

In the description, the expression state name is used to denote a state of the state
machine. state data is used to denote the internal state of the Erlang process which
implements the state machine.

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Return = fok,StateName,StateDatag | fok,StateName,StateData,Timeoutg
� | fstop,Reasong | ignore
� StateName = atom()
� StateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

Whenever a gen fsm is started using gen fsm:start/3,4 or gen fsm:start link/3,4,
this function is called by the new process to initialize.

Args is the Args argument provided to the start function.

If initialization is successful, the function should return fok,StateName,StateDatag or
fok,StateName,StateData,Timoutg, where StateName is the initial state name and
StateData the initial state data of the gen fsm.

If an integer timout value is provided, a timout will occur unless an event or a message
is received within Timeout milliseconds. A timout is represented by the atom timeout
and should be handled by the Module:StateName/2 callback functions. The atom
inifinity can be used to wait indefinitely, this is the default value.

If something goes wrong during the initialization the function should return
fstop,Reasong, where Reason is any term, or ignore.

Module:StateName(Event, StateData) -> Result

Types:

� Event = timeout | term()
� StateData = term()
� Result = fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,NewStateDatag
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

147STDLIB

gen fsm STDLIB Reference Manual

There should be one instance of this function for each possible state name. Whenever a
gen fsm receives an event sent using gen fsm:send event/2, the instance of this
function with the same name as the current state name StateName is called to handle
the event. It is also called if a timeout occurs.

Event is either the atom timeout, if a timeout has occured, or the Event argument
provided to send event.

StateData is the state data of the gen fsm.

If the function returns fnext state,NextStateName,NewStateDatag or
fnext state,NextStateName,NewStateData,Timeoutg, the gen fsm will continue
executing with the current state name set to NextStateName and with the possibly
updated state data NewStateData. See Module:init/1 for a description of Timeout.

If the function returns fstop,Reason,NewStateDatag, the gen fsm will call
Module:terminate(Reason,NewStateData) and terminate.

Module:handle event(Event, StateName, StateData) -> Result

Types:

� Event = term()
� StateName = atom()
� StateData = term()
� Result = fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,NewStateDatag
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

Whenever a gen fsm receives an event sent using gen fsm:send all state event/2,
this function is called to handle the event.

StateName is the current state name of the gen fsm.

See Module:StateName/2 for a description of the other arguments and possible return
values.

Module:StateName(Event, From, StateData) -> Result

Types:

� Event = term()
� From = fpid(),Tagg
� StateData = term()
� Result = freply,Reply,NextStateName,NewStateDatag |
freply,Reply,NextStateName,NewStateData,Timeoutg

� | fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,Reply,NewStateDatag | fstop,Reason,NewStateDatag
� Reply = term()
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity

148 STDLIB

STDLIB Reference Manual gen fsm

� Reason = normal | term()

There should be one instance of this function for each possible state name. Whenever a
gen fsm receives an event sent using gen fsm:sync send event/2,3, the instance of
this function with the same name as the current state name StateName is called to
handle the event.

Event is the Event argument provided to sync send event.

From is a tuple fPid,Tagg where Pid is the pid of the process which called
sync send event and Tag is a unique tag.

StateData is the state data of the gen fsm.

If the function returns freply,Reply,NextStateName,NewStateDatag or
freply,Reply,NextStateName,NewStateData,Timeoutg, Reply will be given back to
From as the return value of sync send event. The gen fsm then continues executing
with the current state name set to NextStateName and with the possibly updated state
data NewStateData. See Module:init/1 for a description of Timeout.

If the function returns fnext state,NextStateName,NewStateDatag or
fnext state,NextStateName,NewStateData,Timeoutg, the gen fsm will continue
executing in NextStateName with NewStateData. Any reply to From must be given
explicitly using gen fsm:reply/2.

If the function returns fstop,Reason,Reply,NewStateDatag, Reply will be given back
to From. If the function returns fstop,Reason,NewStateDatag, any reply to From must
be given explicitly using gen fsm:reply/2. The gen fsm will then call
Module:terminate(Reason,NewStateData) and terminate.

Module:handle sync event(Event, From, StateName, StateData) -> Result

Types:

� Event = term()
� From = fpid(),Tagg
� StateName = atom()
� StateData = term()
� Result = freply,Reply,NextStateName,NewStateDatag |
freply,Reply,NextStateName,NewStateData,Timeoutg

� | fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,Reply,NewStateDatag | fstop,Reason,NewStateDatag
� Reply = term()
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = term()

Whenever a gen fsm receives an event sent using
gen fsm:sync send all state event/2,3, this function is called to handle the event.

StateName is the current state name of the gen fsm.

See Module:StateName/3 for a description of the other arguments and possible return
values.

Module:handle info(Info, StateName, StateData) -> Result

149STDLIB

gen fsm STDLIB Reference Manual

Types:

� Info = term()
� StateName = atom()
� StateData = term()
� Result = fnext state,NextStateName,NewStateDatag |
fnext state,NextStateName,NewStateData,Timeoutg

� | fstop,Reason,NewStateDatag
� NextStateName = atom()
� NewStateData = term()
� Timeout = int()>0 | infinity
� Reason = normal | term()

This function is called by a gen fsm when it receives any other message than a
synchronous or asynchronous event (or a system message).

Info is the received message.

See Module:StateName/2 for a description of the other arguments and possible return
values.

Module:terminate(Reason, StateName, StateData)

Types:

� Reason = normal | shutdown | term()
� StateName = atom()
� StateData = term()

This function is called by a gen fsm when it is about to terminate. It should be the
opposite of Module:init/1 and do any necessary cleaning up. When it returns, the
gen fsm terminates with Reason. The return value is ignored.

Reason is a term denoting the stop reason, StateName is the current state name, and
StateData is the state data of the gen fsm.

Reason depends on why the gen fsm is terminating. If it is because another callback
function has returned a stop tuple fstop,..g, Reason will have the value specified in
that tuple. If it is due to a failure, Reason is the error reason.

If the gen fsm is part of a supervision tree and is ordered by its superviser to terminate,
this function will be called with Reason=shutdown if the following conditions apply:

� the gen fsm has been set to trap exit signals, and

� the shutdown strategy as defined in the supervisor’s child specification is an integer
timeout value, not brutal kill.

Otherwise, the gen fsm will be immediately terminated.

Note that for any other reason than normal or shutdown, the gen fsm is assumed to
terminate due to an error and an error report is issued using error logger:format/2.

Module:code change(OldVsn, StateName, StateData, Extra) -> fok, NextStateName,
NewStateDatag

Types:

� OldVsn = undefined | term()
� StateName = NextStateName = atom()

150 STDLIB

STDLIB Reference Manual gen fsm

� StateData = NewStateData = term()
� Extra = term()

This function is called by a gen fsm when it should update its state data due to a code
replacement, i.e. when the instruction
fupdate,Module,Change,PrePurge,PostPurge,Modulesgwhere
Change=fadvanced,Extrag has been given to the release handler. See SASL User’s
Guide for more information.

OldVsn is the vsn attribute of the old version of the callback module Module, or
undefined if no such attribute is defined.

StateName is the current state name and StateData the state data of the gen fsm.

Extra is the same as in the fadvanced,Extrag part of the update instruction.

The function should return the new current state name and updated state data.

SEE ALSO

supervisor(3), sys(3)

151STDLIB

gen server STDLIB Reference Manual

gen server
Erlang Module

A behaviour module for implementing the server of a client-server relation. A generic
server process (gen server) implemented using this module will have a standard set of
interface functions and include functionality for tracing and error reporting. It will also
fit into an OTP supervision tree. Refer to OTP Design Principles for more information.

A gen server assumes all specific parts to be located in a callback module exporting a
pre-defined set of functions. The relationship between the behaviour functions and the
callback functions can be illustrated as follows:

gen server module Callback module
----------------- ---------------
gen server:start -----> Module:init/1

gen server:call
gen server:multi call -----> Module:handle call/3

gen server:cast
gen server:abcast -----> Module:handle cast/2

- -----> Module:handle info/2

- -----> Module:terminate/2

- -----> Module:code change/3

If a callback function fails or returns a bad value, the gen server will terminate.

The sys module can be used for debugging a gen server.

Note that a gen server does not trap exit signals automatically, this must be explicitly
initiated in the callback module.

Unless otherwise stated, all functions in this module fail if the specified gen server does
not exist or if bad arguments are given.

Exports

start(Module, Args, Options) -> Result

start(ServerName, Module, Args, Options) -> Result

start link(Module, Args, Options) -> Result

start link(ServerName, Module, Args, Options) -> Result

Types:

� ServerName = flocal,Nameg | fglobal,Nameg

152 STDLIB

STDLIB Reference Manual gen server

� Name = atom()
� Module = atom()
� Args = term()
� Options = [Option]
� Option = fdebug,Dbgsg | ftimeout,Timeg | fspawn opt,SOptsg
� Dbgs = [Dbg]
� Dbg = trace | log | statistics | flog to file,FileNameg | finstall,fFunc,FuncStategg
� SOpts = [term()]
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a gen server process which calls Module:init/1 to initialize. To ensure a
synchronized start-up procedure, this function does not return until Module:init/1 has
returned.

A gen server started using start link is linked to the calling process, this function
must be used if the gen server is included in a supervision tree. A gen server started
using start is not linked to the calling process.

If ServerName=flocal,Nameg the gen server is registered locally as Name using
register/2. If ServerName=fglobal,Nameg the gen server is registered globally as
Name using global:register name/2. If no name is provided, the gen server is not
registered.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the option ftimeout,Timeg is present, the gen server is allowed to spend Time
milliseconds initializing or it will be terminated and the start function will return
ferror,timeoutg.

If the option fdebug,Dbgsg is present, the corresponding sys function will be called for
each item in Dbgs. Refer to sys(3) for more information.

If the option fspawn opt,SOptsg is present, SOpts will be passed as option list to the
spawn opt BIF which is used to spawn the gen server. Refer to erlang(3) for
information about the spawn opt options.

If the gen server is successfully created and initialized the function returns fok,Pidg,
where Pid is the pid of the gen server. If there already exists a process with the
specified ServerName the function returns ferror,falready started,Pidgg, where
Pid is the pid of that process.

If Module:init/1 fails with Reason, the function returns ferror,Reasong. If
Module:init/1 returns fstop,Reasong or ignore, the process is terminated and the
function returns ferror,Reasong or ignore, respectively.

call(ServerRef, Request) -> Reply

call(ServerRef, Request, Timeout) -> Reply

Types:

� ServerRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Request = term()
� Timeout = int()>0 | infinity

153STDLIB

gen server STDLIB Reference Manual

� Reply = term()

Makes a synchronous call to the gen server ServerRef by sending a request and waiting
until a reply arrives or a timout occurs. The gen server will call Module:handle call/3
to handle the request.

ServerRef can be:

� the pid,

� Name, if the gen server is locally registered,

� fName,Nodeg, if the gen server is locally registered at another node, or

� fglobal,Nameg, if the gen server is globally registered.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle call/3.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for a reply, or the atom infinity to wait indefinitely. Default value is 5000. If no reply
is received within the specified time, the function call fails.

The return value Reply is defined in the return value of Module:handle call/3.

In the case where the gen server terminates during the handling of the request and the
client is linked to the gen server and trapping exits, the exit message is removed from
the client’s receive queue before the function call fails.
This behaviour is retained for backwards compatibility only and may change in the
future. Note that if the gen server crashes in between calls, the client must take care of
the exit message anyway.
Warning: Under certain circumstances (e.g. ServerRef = fName,Nodeg, and Node goes
down) the exit message cannot be removed.

multi call(Name, Request) -> Result

multi call(Nodes, Name, Request) -> Result

multi call(Nodes, Name, Request, Timeout) -> Result

Types:

� Nodes = [Node]
� Node = atom()
� Name = atom()
� Request = term()
� Timeout = int()>=0 | infinity
� Result = fReplies,BadNodesg
� Replies = [fNode,Replyg]
� Reply = term()
� BadNodes = [Node]

Makes a synchronous call to all gen servers locally registered as Name at the specified
nodes by first sending a request to every node and then waiting for the replies. The
gen servers will call Module:handle call/3 to handle the request.

The function returns a tuple fReplies,BadNodesgwhere Replies is a list of
fNode,Replyg and BadNodes is a list of node that either did not exist, or where the
gen server Name did not exist or did not reply.

Nodes is a list of node names to which the request should be sent. Default value is the
list of all known nodes [node()|nodes()].

154 STDLIB

STDLIB Reference Manual gen server

Name is the locally registered name of each gen server.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle call/3.

Timeout is an integer greater than zero which specifies how many milliseconds to wait
for each reply, or the atom infinity to wait indefinitely. Default value is infinity. If
no reply is received from a node within the specified time, the node is added to
BadNodes.

When a reply Reply is received from the gen server at a node Node, fNode,Replyg is
added to Replies. Reply is defined in the return value of Module:handle call/3.

Warning:
If one of the nodes is running Erlang/OTP R6B or older, and the gen server is not
started when the requests are sent, but starts within 2 seconds, this function waits the
whole Timeout, which may be infinity.

This problem does not exist if all nodes are running Erlang/OTP R7B or later.

This function does not read out any exit messages like call/2,3 does.

The previously undocumented functions safe multi call/2,3,4 were removed in
OTP R7B/Erlang 5.0 since this function is now safe, except in the case mentioned
above.

cast(ServerRef, Request) -> ok

Types:

� ServerRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Request = term()

Sends an asynchronous request to the gen server ServerRef and returns ok
immediately. The gen server will call Module:handle cast/2 to handle the request.

See call/2,3 for a description of ServerRef.

Request is an arbitrary term which is passed as one of the arguments to
Module:handle cast/2.

abcast(Name, Request) -> abcast

abcast(Nodes, Name, Request) -> abcast

Types:

� Nodes = [Node]
� Node = atom()
� Name = atom()
� Request = term()

155STDLIB

gen server STDLIB Reference Manual

Sends an asynchronous request to the gen servers locally registered as Name at the
specified nodes. The function returns immediately and ignores nodes that does not
exist, or where the gen server Name does not exist. The gen servers will call
Module:handle cast/2 to handle the request.

See multi call/2,3,4 for a description of the arguments.

reply(Client, Reply) -> true

Types:

� Client - see below
� Reply = term()

This function can be used by a gen server to explicitly send a reply to a client that called
call or multi call, when the reply cannot be defined in the return value of
Module:handle call/3.

Client must be the From argument provided to the callback function. Reply is an
arbitrary term, which will be given back to the client as the return value of call or
multi call.

CALLBACK FUNCTIONS

The following functions should be exported from a gen server callback module.

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Result = fok,Stateg | fok,State,Timeoutg
� | fstop,Reasong | ignore
� State = term()
� Timeout = int()>=0 | infinity
� Reason = term()

Whenever a gen server is started using gen server:start/3,4 or
gen server:start link/3.4, this function is called by the new process to initialize.

Args is the Args argument provided to the start function.

If the initialization is successful, the function should return fok,Stateg or
fok,State,Timoutg, where State is the internal state of the gen server.

If an integer timout value is provided, a timout will occur unless a request or a message
is received within Timeout milliseconds. A timout is represented by the atom timeout
which should be handled by the handle info/2 callback function. The atom
inifinity can be used to wait indefinitely, this is the default value.

If something goes wrong during the initialization the function should return
fstop,Reasong where Reason is any term, or ignore.

Module:handle call(Request, From, State) -> Result

156 STDLIB

STDLIB Reference Manual gen server

Types:

� Request = term()
� From = fpid(),Tagg
� State = term()
� Result = freply,Reply,NewStateg | freply,Reply,NewState,Timeoutg
� | fnoreply,NewStateg | fnoreply,NewState,Timeoutg
� | fstop,Reason,Reply,NewStateg | fstop,Reason,NewStateg
� Reply = term()
� NewState = term()
� Timeout = int()>=0 | infinity
� Reason = term()

Whenever a gen server receives a request sent using gen server:call/2,3 or
gen server:multi call/2,3,4, this function is called to handle the request.

Request is the Request argument provided to call or multi call.

From is a tuple fPid,Tagg where Pid is the pid of the client and Tag is a unique tag.

State is the internal state of the gen server.

If the function returns freply,Reply,NewStateg or
freply,Reply,NewState,Timoutg, Reply will be given back to From as the return
value of call or included in the return value of multi call. The gen server then
continues executing with the possibly updated internal state NewState. See
Module:init/1 for a description of Timeout.

If the functions returns fnoreply,NewStateg or fnoreply,NewState,Timeoutg, the
gen server will continue executing with NewState. Any reply to From must be given
explicitly using gen server:reply/2.

If the function returns fstop,Reason,Reply,NewStateg, Reply will be given back to
From. If the function returns fstop,Reason,NewStateg, any reply to From must be
given explicitly using gen server:reply/2. The gen server will then call
Module:terminate(Reason,NewState) and terminate.

Module:handle cast(Request, State) -> Result

Types:

� Request = term()
� State = term()
� Result = fnoreply,NewStateg | fnoreply,NewState,Timeoutg
� | fstop,Reason,NewStateg
� NewState = term()
� Timeout = int()>=0 | infinity
� Reason = term()

Whenever a gen server receives a request sent using gen server:cast/2 or
gen server:abcast/2,3, this function is called to handle the request.

See Module:handle call/3 for a description of the arguments and possible return
values.

Module:handle info(Info, State) -> Result

Types:

157STDLIB

gen server STDLIB Reference Manual

� Info = timeout | term()
� State = term()
� Result = fnoreply,NewStateg | fnoreply,NewState,Timeoutg
� | fstop,Reason,NewStateg
� NewState = term()
� Timeout = int()>=0 | infinity
� Reason = normal | term()

This function is called by a gen server when a timeout occurs or when it receives any
other message than a synchronous or asynchronous request (or a system message).

Info is either the atom timeout, if a timeout has occured, or the received message.

See Module:handle call/3 for a description of the other arguments and possible
return values.

Module:terminate(Reason, State)

Types:

� Reason = normal | shutdown | term()
� State = term()

This function is called by a gen server when it is about to terminate. It should be the
opposite of Module:init/1 and do any necessary cleaning up. When it returns, the
gen server terminates with Reason. The return value is ignored.

Reason is a term denoting the stop reason and State is the internal state of the
gen server.

Reason depends on why the gen server is terminating. If it is because another callback
function has returned a stop tuple fstop,..g, Reason will have the value specified in
that tuple. If it is due to a failure, Reason is the error reason.

If the gen server is part of a supervision tree and is ordered by its supervisor to
terminate, this function will be called with Reason=shutdown if the following
conditions apply:

� the gen server has been set to trap exit signals, and

� the shutdown strategy as defined in the supervisor’s child specification is an integer
timeout value, not brutal kill.

Otherwise, the gen server will be immediately terminated.

Note that for any other reason than normal or shutdown, the gen server is assumed to
terminate due to an error and an error report is issued using error logger:format/2.

Module:code change(OldVsn, State, Extra) -> fok, NewStateg

Types:

� OldVsn = undefined | term()
� State = NewState = term()
� Extra = term()

158 STDLIB

STDLIB Reference Manual gen server

This function is called by a gen server when it should update its internal state due to
code replacement, i.e. when the instruction
fupdate,Module,Change,PrePurge,PostPurge,Modulesgwhere
Change=fadvanced,Extrag has been given to the release handler. See SASL User’s
Guide for more information.

OldVsn is the vsn attribute of the old version of the callback module Module, or
undefined if no such attribute is defined.

State is the internal state of the gen server.

Extra is the same as in the fadvanced,Extrag part of the update instruction.

The function should return the updated internal state.

SEE ALSO

supervisor(3), sys(3)

159STDLIB

io STDLIB Reference Manual

io
Erlang Module

This module provides an interface to standard Erlang IO servers. The output functions
all return ok if they are successful, or exit if they are not. In the following description, a
parameter within square brackets means that that parameter is optional. [IoDevice,]
is such an example. If included, it must be the Pid of a process which handles the IO
protocols. This is often the IoDevice returned by file:open/2 (see file). For a
description of the I/O protocols refer to Armstrong, Virding and Williams, ’Concurrent
Programming in Erlang’, Chapter 13.

Exports

put chars([IoDevice,] Chars)

Writes the characters Chars to the standard output (IoDevice). Chars is a list of
characters. The list is not necessarily flat.

nl([IoDevice])

Writes new line to the standard output (IoDevice).

get chars([IoDevice,] Prompt, Count)

Gets Count characters from standard input (IoDevice), prompting it with Prompt. It
returns:

ListOfChars Returns the input characters, if they are less than Count.

eof End of file was encountered.

get line([IoDevice,] Prompt)

Gets a line from the standard input (IoDevice), prompting it with Prompt. It returns:

ListOfChars The characters in the line terminated by a LF unless the line read was the
last line of the file and was not terminated by LF.

eof End of file was encountered.

write([IoDevice,] Term)

Writes the term Term to the standard output (IoDevice).

read([IoDevice,] Prompt)

160 STDLIB

STDLIB Reference Manual io

Reads a term from the standard input (IoDevice), prompting it with Prompt. It returns:

fok, Termg The parsing was successful.

ferror, ErrorInfog The parsing failed.

eof End of file was encountered.

fwrite(Format)

format(Format)

Equivalent to fwrite(Format, []).

fwrite([IoDevice,] Format, Arguments)

format([IoDevice,] Format, Arguments)

Writes the list of items in Arguments on the standard output (IoDevice) in accordance
with Format. Format is a list of plain characters which are copied to the output device,
and control sequences which cause the arguments to be printed. If Format is an atom, it
is first converted to a list with the aid of atom to list/1. Arguments is the list of items
to be printed.

> io:fwrite("Hello world!~n", []).
Hello world
ok

The general format of a control sequence is ~F.P.PadC. The character C determines the
type of control sequence to be used, F and P are optional numeric arguments. If F, P, or
Pad is *, the next argument in Arguments is used as the numeric value of F or P.

F is the field width of the printed argument. A negative value means that the
argument will be left justified within the field, otherwise it will be right justified. If no
field width is specified, the required print width will be used. If the field width specified
is too small, then the whole field will be filled with * characters.

P is the precision of the printed argument. A default value is used if no precision is
specified. The interpretation of precision depends on the control sequences. Unless
otherwise specified, the argument within is used to determine print width.

Pad is the padding character. This is the character used to pad the printed representation
of the argument so that it conforms to the specified field width and precision. Only one
padding character can be specified and, whenever applicable, it is used for both the field
width and precision. The default padding character is ’ ’ (space).

The following control sequences are available:

~ The character ~ is written.

c The argument is a number that will be interpreted as an ASCII code. The precision is
the number of times the character is printed and it defaults to the field width,
which in turn defaults to one. The following example illustrates:

> io:fwrite("|~10.5c|~-10.5c|~5c|~n", [$a, $b, $c]).
| aaaaa|aaaaa |ccccc|
ok

f The argument is a float which is written as [-]ddd.ddd, where the precision is the
number of digits after the decimal point. The default precision is 6.

161STDLIB

io STDLIB Reference Manual

e The argument is a float which is written as [-]d.ddde+-ddd, where the precision is
the number of digits written. The default precision is 6.

g The argument is a float which is written as f, if it is > 0.1, and < 10^4. Otherwise, it
is written as e. The precision is the number of significant digits. It defaults to 6.
There must always be a sufficient number of digits for printing a correct floating
point representation of the argument.

s Prints the argument with the string syntax. The argument is a list of character codes
(possibly not a flat list), or an atom. The characters are printed without quotes. In
this format, the printed argument is truncated to the given precision and field
width.
This format can be used for printing any object and truncating the output so it fits
a specified field:

> io:fwrite("|~10w|~n", [{hey, hey, hey}]).
|**********|
ok
> io:fwrite("|~10s|~n", [io_lib:write({hey, hey, hey})]).
|{hey, hey, h|
ok

w Writes data with the standard syntax. This is used to output Erlang terms. Atoms are
printed within quotes if they contain embedded non-printable characters, and
floats are printed in the default g format.

p Writes the data with standard syntax in the same way as ~w, but breaks terms whose
printed representation is longer than one line into many lines and indents each line
sensibly. It also tries to detect lists of printable characters and to output these as
strings. For example:

> T = [{attributes,[[{id,age,1.50000},{mode,explicit},
{typename,"INTEGER"}],
[{id,cho},{mode,explicit},{typename,’Cho’}]]},
{typename,’Person’},{tag,{’PRIVATE’,3}},
{mode,implicit}].

...
> io:fwrite("~w~n", [T]).
[{attributes,[[{id,age,1.50000},{mode,explicit},{typename,
[73,78,84,69,71,69,82]}],[{id,cho},{mode,explicit},{typena
me,’Cho’}]]},{typename,’Person’},{tag,{’PRIVATE’,3}},{mode
,implicit}]
ok
> io:fwrite("~p~n", [T]).
[{attributes,[[{id,age,1.50000},

{mode,explicit},
{typename,"INTEGER"}],

[{id,cho},{mode,explicit},{typename,’Cho’}]]},
{typename,’Person’},
{tag,{’PRIVATE’,3}},
{mode,implicit}]
ok

The field width specifies the maximum line length. It defaults to 80. The precision
specifies the initial indentation of the term. It defaults to the number of characters
printed on this line in the same call to io:fwrite or io:format. For example,
using T above:

162 STDLIB

STDLIB Reference Manual io

> io:fwrite("Here T = ~p~n", [T]).
Here T = [{attributes,[[{id,age,1.50000},

{mode,explicit},
{typename,"INTEGER"}],

[{id,cho},{mode,explicit},
{typename,’Cho’}]]},

{typename,’Person’},
{tag,{’PRIVATE’,3}},
{mode,implicit}]

ok

W Writes data in the same way as ~w, but takes an extra argument which is the
maximum depth to which terms are printed. Anything below this depth is
replaced with For example, using T above:

> io:fwrite("~W~n", [T,9]).
[{attributes,[[{id,age,1.50000},{mode,explicit},{typename|
...}],[{id,cho},{mode|...},{...}]]},{typename,’Person’},{t
ag,{’PRIVATE’,3}},{mode,implicit}]
ok

If the maximum depth has been reached, then it is impossible to read in the
resultant output. Also, the |... form in a tuple denotes that there are more
elements in the tuple but these are below the print depth.

P Writes data in the same way as ~p, but takes an extra argument which is the
maximum depth to which terms are printed. Anything below this depth is
replaced with For example:

> io:fwrite("~P~n", [T,9]).
[{attributes,[[{id,age,1.50000},{mode,explicit},

{typename|...}],
[{id,cho},{mode|...},{...}]]},

{typename,’Person’},
{tag,{’PRIVATE’,3}},
{mode,implicit}]

ok

n Writes a new line.

i Ignores the next term.

Returns:

ok The formatting succeeded.

If an error occurs, there is no output. For example:

> io:fwrite("~s ~w ~i ~w ~c ~n",[’abc def’, ’abc def’,
{foo, 1},{foo, 1}, 65]).

abc def ’abc def’ {foo, 1} A
ok
> io:fwrite("~s", [65]).
** exited: {badarg,[{io,format,[<0.21.0>,"~s","A"]},

{erl_eval,expr,3},
{erl_eval,exprs,4},
{shell,eval_loop,2}]} **

163STDLIB

io STDLIB Reference Manual

In this example, an attempt was made to output the single character ’65’ with the aid of
the string formatting directive “~s”.

The two functions fwrite and format are identical. The old name format has been
retained for backwards compatibility, while the new name fwrite has been added as a
logical complement to fread.

fread([IoDevice,] Prompt, Format)

Reads characters from the standard input (IoDevice), prompting it with Prompt.
Interprets the characters in accordance with Format. Format is a list of control
sequences which directs the interpretation of the input.

Format may contain:

� White space characters (SPACE, TAB and NEWLINE) which cause input to be
read to the next non-white space character.

� Ordinary characters which must match the next input character.

� Control sequences, which have the general format ~*FC. The character * is an
optional return suppression character. It provides a method to specify a field which
is to be omitted. F is the field width of the input field and C determines the type
of control sequence.
Unless otherwise specified, leading white-space is ignored for all control sequences.
An input field cannot be more than one line wide. The following control sequences
are available:

~ A single ~ is expected in the input.
d A decimal integer is expected.
f A floating point number is expected. It must follow the Erlang floating point

number syntax.
s A string of non-white-space characters is read. If a field width has been

specified, this number of characters are read and all trailing white-space
characters are stripped. An Erlang string (list of characters) is returned.

a Similar to s, but the resulting string is converted into an atom.
c The number of characters equal to the field width are read (default is 1) and

returned as an Erlang string. However, leading and trailing white-space
characters are not omitted as they are with s. All characters are returned.

l Returns the number of characters which have been scanned up to that point,
including white-space characters.

It returns:

fok, InputListg The read was successful and InputList is the list of
successfully matched and read items.

ferror, Whatg The read operation failed and the parameter What can be used as
argument to report error/1 to produce an error message.

eof End of file was encountered.

Examples:

164 STDLIB

STDLIB Reference Manual io

> io:fread(’enter>’, "~f~f~f").
enter>1.9 35.5e3 15.0
{ok, [1.90000, 3.55000e+4, 15.0000]}
> io:fread(’enter>’, "~10f~d").
enter> 5.67899
{ok, [5.67800, 99]}
> io:fread(’enter>’, ":~10s:~10c:").
enter>: alan : joe :
{ok, ["alan", " joe "]}

scan erl exprs(Prompt)

scan erl exprs([IoDevice,] Prompt, StartLine)

Reads data from the standard input (IoDevice), prompting it with Prompt. Reading
starts at line number StartLine (1). The data is tokenized as if it were a sequence of
Erlang expressions until a final ’.’ is reached. This token is also returned. It returns:

fok, Tokens, EndLineg The tokenization succeeded.

ferror, ErrorInfo, EndLineg An error occurred.

feof, EndLineg End of file was encountered.

Example:

> io:scan_erl_exprs(’enter>’).
enter>abc(), "hey".
{ok,[{atom, 1, abc},{’(’, 1}, {’)’, 1}, {’, ’, 1},

{string, 1, "hey"}, {dot, 1}], 2}
> io:scan_erl_exprs(’enter>’).
enter>1.0er.
{error, {1, erl_scan, float}, 2}

scan erl form(Prompt)

scan erl form(IoDevice, Prompt[, StartLine])

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts
reading at line number StartLine (1). The data is tokenized as if it were an Erlang form
- one of the valid Erlang expressions in an Erlang source file - until a final ’.’ is reached.
This last token is also returned. The return values are the same as for scan erl exprs.

parse erl exprs(Prompt)

parse erl exprs(IoDevice, Prompt[, StartLine])

Reads data from the standard input (IoDevice), prompting it with Prompt. Starts
reading at line number StartLine (1). The data is tokenized and parsed as if it were a
sequence of Erlang expressions until a final ’.’ is reached. It returns:

fok, ExpressionList, EndLineg The parsing was successful.

ferror, ErrorInfo, EndLineg An error occurred.

feof, EndLineg End of file was encountered.

Example:

165STDLIB

io STDLIB Reference Manual

> io:parse_erl_exprs(’enter>’).
enter>abc(), "hey".
{ok, [{call, 1, [], abc, []}, {string, 1, "hey"}], 2}
> io:parse_erl_exprs (’enter>’).
enter>abc("hey".
{error, {1, erl_parse, {before, {terminator,’) ’}, {dot, 1}}}, 2}

parse erl form(Prompt)

parse erl form(IoDevice, Prompt[, StartLine])

Reads data from the standard input (IoDevice), prompting it with Prompt Starts
reading at line number StartLine (1). The data is tokenized and parsed as if it were an
Erlang form - one of the valid Erlang expressions in an Erlang source file - until a final
’.’ is reached. It returns:

fok, Form, EndLineg The parsing was successful.

ferror, ErrorInfo, EndLineg An error occurred.

feof, EndLineg End of file was encountered.

Standard Input/Output

All Erlang processes have a default standard IO device. This device is used when no
IoDevice argument is specified in the IO calls. However, it is sometimes desirable to
use an explicit IoDevice argument which refers to the default IO device. This is the
case with functions that can access either a file or the default IO device. The atom
standard io has this special meaning. The following example illustrates this:

> io:read(’enter>’).
enter>foo.
{term, foo}
> io:read(standard_io, ’enter>’).
enter>bar.
{term, bar}

There is always a process registered under the name of user. This can be used for
sending output to the user.

Error Information

The ErrorInfo mentioned above is the standard ErrorInfo structure which is returned
from all IO modules. It has the following format:

{ErrorLine, Module, ErrorDescriptor}

A string which describes the error is obtained with the following call:

apply(Module, format_error, ErrorDescriptor)

166 STDLIB

STDLIB Reference Manual io lib

io lib
Erlang Module

This module contains functions for converting to and from strings (lists of characters).
They are used for implementing the functions in the io module. There is no guarantee
that the character lists returned from some of the functions are flat, they can be deep
lists. lists:flatten/1 is used for generating flat lists.

Exports

nl()

Returns a character list which represents a new line character.

write(Term)

write(Term, Depth)

Returns a character list which represents Term. The Depth (-1) argument controls the
depth of the structures written. When the specified depth is reached, everything below
this level is replaced by “...”. For example:

> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9})).
"{1,[2],[3],[4,5],6,7,8,9}"
> lists:flatten(io_lib:write({1,[2],[3],[4,5],6,7,8,9}, 5)).
"{1,[2],[3],[4|...],6|...}"

print(Term)

print(Term, Column, LineLength, Depth)

Also returns a list of characters which represents Term, but breaks representations which
are longer than one line into many lines and indents each line sensibly. It also tries to
detect and output lists of printable characters as strings. Column is the starting column
(1), LineLength the maximum line length (80), and Depth the maximum print depth.

fwrite(Format, Data)

format(Format, Data)

Returns a character list which represents Data formatted in accordance with Format.
Refer to io [page 160] for a detailed description of the available formatting options. A
fault is generated if there is an error in the format string or argument list.

fread(Format, String)

167STDLIB

io lib STDLIB Reference Manual

Tries to read String in accordance with the control sequences in Format. Refer to io
[page 160] for a detailed description of the available formatting options. It is assumed
that String contains whole lines. It returns:

fok, InputList, LeftOverCharsg The string was read. InputList is the list of
successfully matched and read items, and LeftOverChars are the input characters
not used.

fmore, RestFormat, Nchars, InputStackg The string was read, but more input is
needed in order to complete the original format string. RestFormat is the
remaining format string, NChars the number of characters scanned, and
InputStack is the reversed list of inputs matched up to that point.

ferror,Whatg An error occurred which can be formatted with the call
format error/1.

Example:

> io_lib:fread("~f~f~f", "15.6 17.3e-6 24.5").
{ok, [15.6000, 1.73000e-5, 24.5000], []}

fread(Continuation, CharList, Format)

This is the re-entrant formatted reader. It returns:

fdone, Result, LeftOverCharsg The input is complete. The result is one of the
following:

fok, InputListg The string was read. InputList is the list of successfully
matched and read items, and LeftOverChars are the remaining characters.

eof End of file has been encountered. LeftOverChars are the input characters not
used.

ferror,Whatg An error occurred, which can be formatted with the call
format error/1.

fmore, Continuationg More data is required to build a term. Continuation must be
passed to <c>fread/3, when more data becomes available.

write atom(Atom)

Returns the list of characters needed to print the atom Atom.

write string(String)

Returns the list of characters needed to print String as a string.

write char(Integer)

Returns the list of characters needed to print a character constant.

indentation(String, StartIndent)

Returns the indentation if String has been printed, starting at Indentation.

char list(CharList) -> bool()

168 STDLIB

STDLIB Reference Manual io lib

Returns true if CharList is a list of characters, otherwise it returns false.

deep char list(CharList)

Returns true if CharList is a deep list of characters, otherwise it returns false.

printable list(CharList)

Returns true if CharList is a list of printable characters, otherwise it returns false.

Notes

The module io lib also uses the extra modules io lib format, io lib fread, and
io lib pretty. All external interfaces exist in io lib.

Users are strongly advised not to access the other modules directly.

Note:
Any undocumented functions in io lib should not be used.

The continuation of the first call to the re-entrant input functions must be []. Refer to
Armstrong, Virding, Williams, ’Concurrent Programming in Erlang’, Chapter 13 for a
complete description of how the re-entrant input scheme works

169STDLIB

lib STDLIB Reference Manual

lib
Erlang Module

The module lib provides the following useful library functions.

Exports

flush receive() -> void()

Flushes the message buffer of the current process.

error message(Format, Args)

Prints error message Args in accordance with Format in the normal way.

progname() -> atom()

Returns the name of the script that starts the current Erlang session.

nonl(List1)

Removes the last newline character, if any, in List.

send(To, Msg)

This function to makes it possible to send a message through apply.

sendw(To, Msg)

As send/2, but waits for an answer. It is implemented as follows:

sendw(To, Msg) ->
To ! {self(),Msg},
receive
Reply -> Reply

end.

The message returned is not necessarily a reply to the message sent.

Warning

This module is retained for compatibility. It may disappear without warning in a future
release.

170 STDLIB

STDLIB Reference Manual lists

lists
Erlang Module

This module contains functions for list processing. The functions are organized in two
groups: those in the first group perform a particular operation on one ore several lists,
whereas those in the second group perform use a user-defined function (given as the
first argument) to perform an operation on one list.

Exports

append(ListOfLists) -> List1

Types:

� ListOfLists = [List]
� List = List1 = [term()]

Returns a list in which all the sub-lists of ListOfLists have been appended. For
example:

> lists:append([[1, 2, 3], [a, b], [4, 5, 6]]).
[1, 2, 3, a, b, 4, 5, 6]

The result need not be a proper list. The last parameter may be of any datatype and will
be the tail in the resulting list. An example:

> lists:append([[a,b],c]).
[a,b|c]

The atom c will be the tail of the list and the list is therefore not proper (a proper list
ends with []).

As a parameter of [] is ignored this example is also valid (although probably useless):

lists:append([[],d]).

append(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a new list List3 which is made from the elements of List1 followed by the
elements of List2. For example:

> lists:append("abc", "def").
"abcdef".

lists:append(A,B) is equivalent to A ++ B.

The behaviour regarding inproper lists is identical to the behaviour of lists:append/1

171STDLIB

lists STDLIB Reference Manual

concat(Things) -> string()

Types:

� Things = [Thing]
� Thing = atom() | integer() | float() | string()

Concatenates the ASCII list representation of the elements of Things. The elements of
Things can be atoms, integers, floats or strings.

> lists:concat([doc, ’/’, file, ’.’, 3]).
"doc/file.3"

delete(Element, List1) -> List2

Types:

� List1 = list2 = [Element]
� Element = term()

Returns a copy of List1, but the first occurrence of Element, if present, is deleted.

duplicate(N, Element) -> List

Types:

� N = int()
� List = [Element]
� Element = term()

Returns a list which contains N copies of the term Element.

Note:
N must be an integer >= 0. For example:

> lists:duplicate(5, xx).
[xx, xx, xx, xx, xx]

flatlength(DeepList) -> int()

Equivalent to length(flatten(DeepList)), but more efficient.

flatten(DeepList) -> List

Types:

� DeepList = [term() | DeepList]

Returns a flattened version of DeepList.

flatten(DeepList, Tail) -> List

Types:

� DeepList = [term() | DeepList]
� Tail = [term()]

Returns a flattened version of DeepList with the tail Tail appended.

172 STDLIB

STDLIB Reference Manual lists

keydelete(Key, N, TupleList1) -> TupleList2

Types:

� TupleList1 = TupleList2 = [tuple()]
� N = int()
� Key = term()

Returns a copy of TupleList1 where the first occurrence of a tuple whose Nth element
is Key is deleted, if present.

keymember(Key, N, TupleList) -> bool()

Types:

� TupleList = [tuple()]
� N = int()
� Key = term()

Searches the list of tuples TupleList for a tuple whose Nth element is Key.

keymerge(N, List1, List2)

Types:

� N = int()
� List1 = List2 = [tuple()]

Returns the sorted list formed by merging List1 and List2. The merge is performed on
the Nth element of each tuple. Both List1 and List2 must be key-sorted prior to
evaluating this function; otherwise the order of the elements in the result will be
undefined. When elements in the input lists compare equal, elements from List1 are
picked before elements from List2.

keyreplace(Key, N, TupleList1, NewTuple) -> TupleList2

Types:

� Key = term()
� N = int()
� TupleList1 = TupleList2 = [tuple()]
� NewTuple = tuple()

Returns a list of tuples. In this list, a tuple is replaced by the tuple NewTuple. This tuple
is the first tuple in the list where the element number N is equal to Key.

keysearch(Key, N, TupleList) -> Result

Types:

� TupleList = [tuple()]
� N = int()
� Key = term()
� Result = fvalue, tuple()g | false

Searches the list of the tuples TupleList for Tuple whose Nth element is Key. Returns
fvalue, Tupleg if such a tuple is found, or false if no such tuple is found.

keysort(N, List1) -> List2

173STDLIB

lists STDLIB Reference Manual

Types:

� N = int()
� List1 = List2 = [tuple()]

Returns a list containing the sorted elements of List1. TupleList1 must be a list of
tuples, and the sort is performed on the Nth element of the tuple. The sort is stable.

last(List) -> Element

Types:

� List = [Element]
� Element = term()

Returns the last element in List.

max(List) -> Max

Types:

� List = [Element]
� Element = Max = term()

Returns the maximum element of List.

member(Element, List) -> bool()

Types:

� List = [Element]
� Element = term()

Returns true if Element is contained in the list List, otherwise false.

merge(ListOfLists) -> List1

Types:

� ListOfLists = [List]
� List = List1 = [term()]

Returns the sorted list formed by merging all the sub-lists of ListOfLists. All sub-lists
must be sorted prior to evaluating this function.

merge(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns the sorted list formed by merging List1 and List2. Both List1 and List2
must be sorted prior to evaluating this function.

merge(Fun, List1, List2) -> List

Types:

� List = List1 = List2 = [Element]
� Fun = fun(Element, Element) -> bool()
� Element = term()

174 STDLIB

STDLIB Reference Manual lists

Returns the sorted list formed by merging List1 and List2. Both List1 and List2
must be sorted according to the ordering function Fun prior to evaluating this function.
Fun(A,B) should return true if A comes before B in the ordering, false otherwise.

merge3(List1, List2, List3) -> List4

Types:

� List1 = List2 = List3 = List4 = [term()]

Returns the sorted list formed by merging List1, List2 and List3. All of List1, List2
and List3 must be sorted prior to evaluating this function.

min(List) -> Min

Types:

� List = [Element]
� Element = Max = term()

Returns the minimum element of List.

nth(N, List) -> Element

Types:

� N = int()
� List = [Element]
� Element = term()

Returns the Nth element of the List. For example:

> lists:nth(3, [a, b, c, d, e]).
c

nthtail(N, List1) -> List2

Types:

� N = int()
� List1 = List2 = [Alpha]

Returns the Nth tail of List. For example:

> lists:nthtail(3, [a, b, c, d, e]).
[d, e]

prefix(List1, List2) -> bool()

Types:

� List1 = List2 = [term()]

Returns true if List1 is a prefix of List2, otherwise false.

reverse(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns a list with the top level elements in List1 in reverse order.

175STDLIB

lists STDLIB Reference Manual

reverse(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a list where List1 has been reversed and appended to the beginning of List2.
Equivalent to reverse(List1) ++ List2. For example:

> lists:reverse([1, 2, 3, 4], [a, b, c]).
[4, 3, 2, 1, a, b, c]

seq(From, To) -> [int()]

seq(From, To, Incr) -> [int()]

Types:

� From = To = Incr = int()

Returns a sequence of integers which starts with From and contains the successive
results of adding Incr to the previous element, until To has been reached or passed (in
the latter case, To is not an element of the sequence). If To-From has a different sign
from Incr, or if Incr = 0 and From is different from To, an error is signalled (this
implies that the result is never an empty list - the first element is always From).

seq(From, To) is equivalent to seq(From, To, 1).

Examples:

> lists:seq(1, 10).
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

> lists:seq(1, 20, 3).
[1, 4, 7, 10, 13, 16, 19]

> lists:seq(1, 1, 0).
[1]

sort(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns a list which contains the sorted elements of List1.

sort(Fun, List1) -> List2

Types:

� List1 = List2 = [Element]
� Fun = fun(Element, Element) -> bool()
� Element = term()

Returns a list which contains the sorted elements of List1, according to the ordering
function Fun. Fun(A,B) should return true if A comes before B in the ordering, false
otherwise.

sublist(List, N) -> List1

Types:

176 STDLIB

STDLIB Reference Manual lists

� List1 = List2 = [term()]
� N = int()

Returns the first N elements of List. It is not an error for N to exceed the length of the
list when List is a proper list - in that case the whole list is returned.

sublist(List1, Start, Length) -> List2

Types:

� List1 = List2 = [term()]
� Start = End = int()

Returns the sub-list of List starting at Start of length Length. Terminates with a
runtime failure if Start is not in List, but a sub-list of a length less than Length is
accepted. Start is considered to be in List if Start >= 1 and Start <=
length(List)+1.

subtract(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns a new list List3 which is a copy of List1, subjected to the following
procedure: for each element in List2, its first occurrence in List1 is removed. For
example:

> lists:subtract("123212", "212").
"312".

lists:subtract(A,B) is equivalent to A -- B.

suffix(List1, List2) -> bool()

Returns true if List1 is a suffix of List2, otherwise false.

sum(List) -> number()

Types:

� List = [number()]

Returns the sum of the elements in List.

ukeymerge(N, List1, List2)

Types:

� N = int()
� List1 = List2 = [tuple()]

Returns the sorted list formed by merging List1 and List2 while removing consecutive
duplicates. The merge is performed on the Nth element of each tuple. Both List1 and
List2 must be key-sorted prior to evaluating this function; otherwise the order of the
elements in the result will be undefined. When elements in the input lists compare
equal, elements from List1 are picked before elements from List2.

ukeysort(N, List1) -> List2

Types:

177STDLIB

lists STDLIB Reference Manual

� N = int()
� List1 = List2 = [tuple()]

Returns a list containing the sorted elements of List1 with consecutive duplicates
removed. TupleList1 must be a list of tuples, and the sort is performed on the Nth
element of the tuple. The sort is stable.

umerge(ListOfLists) -> List1

Types:

� ListOfLists = [List]
� List = List1 = [term()]

Returns the sorted list formed by merging all the sub-lists of ListOfLists while
removing duplicates. All sub-lists must be sorted and contain no duplicates prior to
evaluating this function.

umerge(List1, List2) -> List3

Types:

� List1 = List2 = List3 = [term()]

Returns the sorted list formed by merging List1 and List2 while removing duplicates.
Both List1 and List2 must be sorted and contain no duplicates prior to evaluating this
function.

umerge(Fun, List1, List2) -> List

Types:

� List = List1 = List2 = [Element]
� Fun = fun(Element, Element) -> bool()
� Element = term()

Returns the sorted list formed by merging List1 and List2 while removing consecutive
duplicates. Both List1 and List2 must be sorted according to the ordering function
Fun prior to evaluating this function. Fun(A,B) should return true if A comes before B
in the ordering, false otherwise.

umerge3(List1, List2, List3) -> List4

Types:

� List1 = List2 = List3 = List4 = [term()]

Returns the sorted list formed by merging List1, List2 and List3 while removing
duplicates. All of List1, List2 and List3 must be sorted and contain no duplicates
prior to evaluating this function.

usort(List1) -> List2

Types:

� List1 = List2 = [term()]

Returns a list which contains the sorted elements of List1 without duplicates.

usort(Fun, List1) -> List2

178 STDLIB

STDLIB Reference Manual lists

Types:

� List1 = List2 = [Element]
� Fun = fun(Element, Element) -> bool()
� Element = term()

Returns a list which contains the sorted elements of List1 with consecutive duplicates
removed, according to the ordering function Fun. Fun(A,B) should return true if A
comes before B in the ordering, false otherwise.

all(Pred, List) -> bool()

Types:

� Pred = fun(A) -> bool()
� List = [A]

Returns true if all elements X in List satisfy Pred(X).

any(Pred, List) -> bool()

Types:

� Pred = fun(Element) -> bool()
� List = [Element]
� Element = term()

Returns true if any of the elements in List satisfies Pred.

dropwhile(Pred, List1) -> List2

Types:

� Pred = fun(A) -> bool()
� List1 = List2 = [A]

Drops elements X from List1 while Pred(X) is true and returns the remaining list.

filter(Pred, List1) -> List2

Types:

� Pred = fun(A) -> bool()
� List1 = List2 = [A]

List2 is a list of all elements X in List1 for which Pred(X) is true.

flatmap(Function, List1) -> Element

Types:

� Function = fun(A) -> B
� List1 = [A]
� Element = [B]

flatmap behaves as if it had been defined as follows:

flatmap(Func, List) ->
append(map(Func, List))

foldl(Function, Acc0, List) -> Acc1

179STDLIB

lists STDLIB Reference Manual

Types:

� Function = fun(A, AccIn) -> AccOut
� List = [A]
� Acc0 = Acc1 = AccIn = AccOut = term()

Acc0 is returned if the list is empty. For example:

> lists:foldl(fun(X, Sum) -> X + Sum end, 0, [1,2,3,4,5]).
15
> lists:foldl(fun(X, Prod) -> X * Prod end, 1, [1,2,3,4,5]).
120

foldr(Function, Acc0, List) -> Acc1

Types:

� Function = fun(A, AccIn) -> AccOut
� List = [A]
� Acc0 = Acc1 = AccIn = AccOut = term()

Calls Function on successive elements of List together with an extra argument Acc
(short for accumulator). Function must return a new accumulator which is passed to
the next call. Acc0 is returned if the list is empty. foldr differs from foldl in that the
list is traversed “bottom up” instead of “top down”. foldl is tail recursive and would
usually be preferred to foldr.

foreach(Function, List) -> void()

Types:

� Function = fun(A) -> void()
� List = [A]

Applies the function Function to each of the elements in List. This function is used
for its side effects and the evaluation order is defined to be the same as the order of the
elements in the list.

map(Func, List1) -> List2

Types:

� Func = fun(A) -> B
� List1 = [A]
� List2 = [B]

map takes a function from As to Bs, and a list of As and produces a list of Bs by applying
the function to every element in the list. This function is used to obtain the return
values. The evaluation order is implementation dependent.

mapfoldl(Function, Acc0, List1) -> fList2, Accg

Types:

� Function = fun(A, AccIn) -> fB, AccOutg
� Acc0 = Acc1 = AccIn = AccOut = term()
� List1 = [A]
� List2 = [B]

180 STDLIB

STDLIB Reference Manual lists

mapfold combines the operations of map and foldl into one pass. For example, we
could sum the elements in a list and double them at the same time:

> lists:mapfoldl(fun(X, Sum) -> {2*X, X+Sum} end,
0, [1,2,3,4,5]).

{[2,4,6,8,10],15}

mapfoldr(Function, Acc0, List1) -> fList2, Accg

Types:

� Function = fun(A, AccIn) -> fB, AccOutg
� Acc0 = Acc1 = AccIn = AccOut = term()
� List1 = [A]
� List2 = [B]

mapfold combines the operations of map and foldr into one pass.

splitwith(Pred, List) -> fList1, List2g

Types:

� Pred = fun(A) -> bool()
� List = List1 = List2 = [A]

Partitions Lists into List1 and List2 according to Pred.

splitwith behaves as if it had been defined as follows:

splitwidth(Pred, List) ->
ftakewhile(Pred, List), dropwhile(Pred, List)g.

Note also that List == List1 ++ List2.

takewhile(Pred, List1) -> List2

Types:

� Pred = fun(A) -> bool()
� List1 = List2 = [A]

Returns the longest prefix of List1 for which all elements X in List1 satisfy Pred(X).

Relics

Some of the exported functions in lists.erl are not documented. In particular, this
applies to a number of maps and folds which have an extra argument for environment
passing. These functions are no longer needed because Erlang 4.4 and later releases have
Funs.

Note:
Any undocumented functions in lists should not be used.

181STDLIB

log mf h STDLIB Reference Manual

log mf h
Erlang Module

The log mf h is a gen event handler module which can be installed in any gen event
process. It logs onto disk all events which are sent to an event manager. Each event is
written as a binary which makes the logging very fast. However, a tool such as the
Report Browser (rb) must be used in order to read the files. The events are written to
multiple files. When all files have been used, the first one is re-used and overwritten.
The directory location, the number of files, and the size of each file are configurable.
The directory will include one file called index, and report files 1, 2,

Exports

init(Dir, MaxBytes, MaxFiles)

init(Dir, MaxBytes, MaxFiles, Pred) -> Args

Types:

� Dir = string()
� MaxBytes = integer()
� MaxFiles = 0 < integer() < 256
� Pred = fun(Event) -> boolean()
� Event = term()
� Args = args()

Initiates the event handler. This function returns Args, which should be used in a call to
gen event:add handler(EventMgr, log mf h, Args).

Dir specifies which directory to use for the log files. MaxBytes specifies the size of each
individual file. MaxFiles specifies how many files are used. Pred is a predicate function
used to filter the events. If no predicate function is specified, all events are logged.

See Also

gen event(3), rb(3)

182 STDLIB

STDLIB Reference Manual math

math
Erlang Module

This module provides an interface to a number of mathematical functions.

Exports

pi() -> float()

A useful number.

sin(X)

cos(X)

tan(X)

asin(X)

acos(X)

atan(X)

atan2(Y, X)

sinh(X)

cosh(X)

tanh(X)

asinh(X)

acosh(X)

atanh(X)

exp(X)

log(X)

log10(X)

pow(X, Y)

sqrt(X)

Types:

� X = Y = number()

A collection of math functions which return floats. Arguments are numbers.

erf(X) -> float()

Types:

� X = number()

Returns the error function of X, where

erf(X) = 2/sqrt(pi)*integral from 0 to X of exp(-t*t) dt.

183STDLIB

math STDLIB Reference Manual

erfc(X) -> float()

Types:

� X = number()

erfc(X) returns 1.0 - erf(X), computed by methods that avoid cancellation for large
X.

Bugs

As these are the C library, the bugs are the same.

184 STDLIB

STDLIB Reference Manual orddict

orddict
Erlang Module

Orddict implements a Key - Value dictionary. An orddict is a representation of a
dictionary, where a list of pairs is used to store the keys and values. The list is ordered
after the keys.

This module provides exactly the same interface as the module dict but with a defined
representation.

185STDLIB

ordsets STDLIB Reference Manual

ordsets
Erlang Module

Sets are collections of elements with no duplicate elements. An ordset is a
representation of a set, where an ordered list is used to store the elements of the set. An
ordered list is more efficient than an unordered list.

This module provides exactly the same interface as the module sets but with a defined
representation.

186 STDLIB

STDLIB Reference Manual pg

pg
Erlang Module

This (experimental) module implements process groups. A process group is a group of
processes that can be accessed by a common name. For example, a group named foobar
can include a set of processes as members of this group and they can be located on
different nodes.

When messages are sent to the named group, all members of the group receive the
message. The messages are serialized. If the process P1 sends the message M1 to the
group, and process P2 simultaneously sends message M2, then all members of the group
receive the two messages in the same order. If members of a group terminate, they are
automatically removed from the group.

This module is not complete. The module is inspired by the ISIS system and the causal
order protocol of the ISIS system should also be implemented. At the moment, all
messages are serialized by sending them through a group master process.

Exports

create(PgName)

Creates an empty group named PgName on the current node.

create(PgName, Node)

Creates an epmty group on the node Node.

join(PgName, Pid)

Joins the Pid Pid to the process group PgName.

send(Pgname, Message)

Sends the tuple fpg message, From, PgName, Messageg to all members of the process
group.

esend(PgName, Mess)

Sends the tuple fpg message, From, PgName, Messageg to all members of the process
group, except the current node.

members(PgName)

Returns a list of the current members in the process group.

187STDLIB

pool STDLIB Reference Manual

pool
Erlang Module

pool can be used to run a set of Erlang nodes as a pool of computational processors. It is
organized as a master and a set of slave nodes and includes the following features:

� The slave nodes send regular reports to the master about their current load.

� Queries can be sent to the master to determine which node will have the least load.

The BIF statistics(run queue) is used for estimating future loads. It returns the
length of the queue of ready to run processes in the Erlang runtime system.

The slave nodes are started with the slave module. This effects, tty IO, file IO, and
code loading.

If the master node fails, the entire pool will exit.

Exports

start(Name)

Starts a new pool. The file .hosts.erlang is read to find host names where the pool
nodes can be started. The current working directory is searched first, then the home
directory, and finally the root directory of the Erlang runtime system. The start-up
procedure fails if the file is not found.

Name is sent to all pool nodes. This is used as the first part of the node name in the
alive/3 statements for the nodes.

The function net adm:host file() reads the file .hosts.erlang for host names. The
slave nodes are started with slave:start. See slave(3).

start/1 is synchronous and all the nodes, as well as all the system servers, are running
when it returns a value. Access rights must also be set so that all nodes in the pool have
the authority to access each other.

start(Name, Args)

This function is the same as start/1, except that the environment Args is passed to the
pool nodes. See slave(3).

attach(Node)

This function ensures that a pool master is running and includes Node in the pool
master’s pool of nodes.

stop()

188 STDLIB

STDLIB Reference Manual pool

Stops the pool and kills all the slave nodes.

get nodes()

Returns a list of the current member nodes of the pool.

pspawn(Mod, Fun, Args)

Spawns a process on the pool node which is expected to have the lowest future load.

pspawn link(Mod, Fun, Args)

Spawn links a process on the pool node which is expected to have the lowest future
load.

get node()

Returns the node ID of the node with the expected lowest future load.

new node(Host, Name)

Starts a new node and attaches it to an already existing pool If there is no existing pool,
it starts a pool with two nodes, the current node and Node. This function can also be
used as a convenient way of starting new nodes, even if the load distribution facilities of
pool are of no interest.

Files

$HOME/.hosts.erlang is used to pick hosts where nodes can be started.

$HOME/.erlang.slave.out.HOST is used for all additional IO that may come from the
slave nodes on standard IO. If the start-up procedure does not work, this file may
indicate the reason.

189STDLIB

proc lib STDLIB Reference Manual

proc lib
Erlang Module

The proc lib module is used to initialize some useful information when a process
starts. The registered names, or the process identities, of the parent process, and the
parent ancestors, are stored together with information about the function initially called
in the process.

A crash report is generated if the process terminates with a reason other than normal or
shutdown. shutdown is used to terminate an abnormal process in a controlled manner.
A crash report contains the previously stored information such as ancestors and initial
function, the termination reason, and information regarding other processes which
terminate as a result of this process terminating.

The crash report is sent to the error logger. An event handler has to be installed in
the error logger event manager in order to handle these reports. The crash report is
tagged crash report and the format/1 function should be called in order to format the
report.

Exports

spawn(Module,Func,Args) -> Pid

spawn(Node,Module,Func,Args) -> Pid

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Node = atom()
� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using
the spawn BIF. The process can be spawned on another Node.

spawn link(Module,Func,Args) -> Pid

spawn link(Node,Module,Func,Args) -> Pid

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Node = atom()

190 STDLIB

STDLIB Reference Manual proc lib

� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using
the spawn link BIF. The process can be spawned on another Node.

spawn opt(Module,Func,Args,Opts) -> Pid

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Opts = list()
� Pid = pid()

Spawns a new process and initializes it as described above. The process is spawned using
the spawn opt/4 BIF. The Opts argument is passed to spawn opt/4.

start(Module,Func,Args) -> Ret

start(Module,Func,Args,Time) -> Ret

start(Module,Func,Args,Time,SpawnOpts) -> Ret

start link(Module,Func,Args) -> Ret

start link(Module,Func,Args,Time) -> Ret

start link(Module,Func,Args,Time,SpawnOpts) -> Ret

Types:

� Module = atom()
� Func = atom()
� Args = [Arg]
� Arg = term()
� Time = integer >= 0 | infinity
� SpawnOpts = list()
� Ret = term() | ferror, Reasong

Starts a new process synchronously. Spawns the process using proc lib:spawn/3 or
proc lib:spawn link/3, and waits for the process to start. When the process has
started, it must call proc lib:init ack(Parent, Ret) or proc lib:init ack(Ret),
where Parent is the process that evaluates start. At this time, Ret is returned from
start.

If the start link function is used and the process crashes before proc lib:init ack is
called, ferror, Reasong is returned if the calling process traps exits.

If Time is specified as an integer, this function waits for Time milliseconds for the process
to start (proc lib:init ack). If it has not started within this time, ferror, timeoutg
is returned, and the process is killed.

The SpawnOpts argument, if given, will be passed as the last argument to the
spawn opt/4 BIF. Refer to the erlang module for information about the spawn opt
options.

init ack(Parent, Ret) -> void()

init ack(Ret) -> void()

191STDLIB

proc lib STDLIB Reference Manual

Types:

� Parent = pid()
� Ret = term()

This function is used by a process that has been started by a proc lib:start function.
It tells Parent that the process has initialized itself, has started, or has failed to initialize
itself. The init ack/1 function uses the parent value previously stored by the
proc lib:start function. If the init ack function is not called (e.g. if the init function
crashes) and proc lib:start/3 is used, that function never returns and the parent
hangs forever. This can be avoided by using a time out in the call to start, or by using
start link.

The following example illustrates how this function and proc lib:start link are used.

-module(my_proc).
-export([start_link/0]).
start_link() ->

proc_lib:start_link(my_proc, init, [self()]).
init(Parent) ->

case do_initialization() of
ok ->

proc_lib:init_ack(Parent, {ok, self()});
{error, Reason} ->

exit(Reason)
end,
loop().

loop() ->
receive

....

format(CrashReport) -> string()

Types:

� CrashReport = void()

Formats a previously generated crash report. The formatted report is returned as a
string.

initial call(PidOrPinfo) -> fModule,Function,Argsg | false

Types:

� PidOrPinfo = pid() | fX,Y,Zg | ProcInfo
� X = Y = Z = int()
� ProcInfo = [void()]
� Module = atom()
� Function = atom()
� Args = [term()]

Extracts the initial call of a process that was spawned using the spawn functions
described above. PidOrPinfo can either be a Pid, an integer tuple (from which a pid
can be created), or the process information of a process (fetched through a
erlang:process info/1 function call).

translate initial call(PidOrPinfo) -> fModule,Function,Arityg

192 STDLIB

STDLIB Reference Manual proc lib

Types:

� PidOrPinfo = pid() | fX,Y,Zg | ProcInfo
� X = Y = Z = int()
� ProcInfo = [void()]
� Module = atom()
� Function = atom()
� Arity = int()

Extracts the initial call of a process which was spawned using the spawn functions
described above. If the initial call is to one of the system defined behaviours such as
gen server or gen event, it is translated to more useful information. If a gen server is
spawned, the returned Module is the name of the callback module and Function is init
(the function that initiates the new server).

A supervisor and a supervisor bridge are also gen server processes. In order to
return information that this process is a supervisor and the name of the call-back
module, Module is supervisor and Function is the name of the supervisor callback
module. Arity is 1 since the init/1 function is called initially in the callback module.

By default, fproc lib,init p,5g is returned if no information about the initial call can
be found. It is assumed that the caller knows that the process has been spawned with
the proc lib module.

PidOrPinfo can either be a Pid, an integer tuple (from which a pid can be created), or
the process information of a process (fetched through a erlang:process info/1
function call).

This function is used by the c:I/0 and c:regs/0 functions in order to present process
information.

See Also

error logger(3)

193STDLIB

queue STDLIB Reference Manual

queue
Erlang Module

This module implements FIFO queues in an efficient manner.

Exports

new() -> Queue

Types:

� Queue = queue()

Returns an empty queue.

in(Item, Q1) -> Q2

Types:

� Item = term()
� Q1 = Q2 = queue()

Inserts Item into the queue Q1. Returns a new queue Q2.

out(Q) -> Result

Types:

� Result = ffvalue, Itemg, Q1g | fempty, Q1g
� Q = Q1 = queue()

Removes the oldest element from the queue Q. Returns the tuple ffvalue, Itemg,
Q1g, where Item is the element removed and Q1 is an identifier for the new queue. If Q
is empty, the tuple fempty, Qg is returned.

to list(Q) -> list()

Types:

� Q = queue()

Returns a list of the elements in the queue, with the oldest element first.

194 STDLIB

STDLIB Reference Manual random

random
Erlang Module

Random number generator. The method is attributed to B.A. Wichmann and I.D.Hill,
in ’An efficient and portable pseudo-random number generator’, Journal of Applied
Statistics. AS183. 1982. Also Byte March 1987.

The current algorithm is a modification of the version attributed to Richard A O’Keefe
in the standard Prolog library.

Every time a random number is requested, a state is used to calculate it, and a new state
produced. The state can either be implicit (kept in the process dictionary) or be an
explicit argument and return value. In this implementation, the state (the type ran())
consists of a tuple of three integers.

Exports

seed() -> ran()

Seeds random number generation with default (fixed) values in the process dictionary,
and returns the old state.

seed(A1, A2, A3) -> ran()

Types:

� A1 = A2 = A3 = int()

Seeds random number generation with integer values in the process dictionary, and
returns the old state.

seed0() -> ran()

Returns the default state.

uniform()-> float()

Returns a random float uniformly distributed between 0.0 and 1.0, updating the state
in the process dictionary.

uniform(N) -> int()

Types:

� N = int()

Given an integer N >= 1, uniform/1 returns a random integer uniformly distributed
between 1 and N, updating the state in the process dictionary.

195STDLIB

random STDLIB Reference Manual

uniform s(State0) -> ffloat(), State1g

Types:

� State0 = State1 = ran()

Given a state, uniform s/1returns a random float uniformly distributed between 0.0
and 1.0, and a new state.

uniform s(N, State0) -> fint(), State1g

Types:

� N = int()
� State0 = State1 = ran()

Given an integer N >= 1 and a state, uniform s/2 returns a random integer uniformly
distributed between 1 and N, and a new state.

Note

Some of the functions use the process dictionary variable random seed to remember the
current seed.

If a process calls uniform/0 or uniform/1 without setting a seed first, seed/0 is called
automatically.

196 STDLIB

STDLIB Reference Manual regexp

regexp
Erlang Module

This module contains functions for regular expression matching and substitution.

Exports

match(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()
� MatchRes = fmatch,Start,Lengthg | nomatch | ferror,errordesc()g
� Start = Length = integer()

Finds the first, longest match of the regular expression RegExp in String. This function
searches for the longest possible match and returns the first one found if there are
several expressions of the same length. It returns as follows:

fmatch,Start,Lengthg if the match succeeded. Start is the starting position of the
match, and Length is the length of the matching string.

nomatch if there were no matching characters.

ferror,Errorg if there was an error in RegExp.

first match(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()
� MatchRes = fmatch,Start,Lengthg | nomatch | ferror,errordesc()g
� Start = Length = integer()

Finds the first match of the regular expression RegExp in String. This call is usually
faster than match and it is also a useful way to ascertain that a match exists. It returns as
follows:

fmatch,Start,Lengthg if the match succeeded. Start is the starting position of the
match and Length is the length of the matching string.

nomatch if there were no matching characters.

ferror,Errorg if there was an error in RegExp.

matches(String, RegExp) -> MatchRes

Types:

� String = RegExp = string()

197STDLIB

regexp STDLIB Reference Manual

� MatchRes = fmatch, Matchesg | ferror, errordesc()g
� Matches = list()

Finds all non-overlapping matches of the expression RegExp in String. It returns as
follows:

fmatch, Matchesg if the regular expression was correct. The list will be empty if there
was no match. Each element in the list looks like fStart, Lengthg, where Start
is the starting position of the match, and Length is the length of the matching
string.

ferror,Errorg if there was an error in RegExp.

sub(String, RegExp, New) -> SubRes

Types:

� String = RegExp = New = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

Substitutes the first occurrence of a substring matching RegExp in String with the
string New. A & in the string New is replaced by the matched substring of String. \& puts
a literal & into the replacement string. It returns as follows:

fok,NewString,RepCountg if RegExp is correct. RepCount is the number of
replacements which have been made (this will be either 0 or 1).

ferror, Errorg if there is an error in RegExp.

gsub(String, RegExp, New) -> SubRes

Types:

� String = RegExp = New = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

The same as sub, except that all non-overlapping occurrences of a substring matching
RegExp in String are replaced by the string New. It returns:

fok,NewString,RepCountg if RegExp is correct. RepCount is the number of
replacements which have been made.

ferror, Errorg if there is an error in RegExp.

split(String, RegExp) -> SplitRes

Types:

� String = RegExp = string()
� SubRes = fok,FieldListg | ferror,errordesc()g
� Fieldlist = [string()]

String is split into fields (sub-strings) by the regular expression RegExp.

If the separator expression is " " (a single space), then the fields are separated by blanks
and/or tabs and leading and trailing blanks and tabs are discarded. For all other values of
the separator, leading and trailing blanks and tabs are not discarded. It returns:

198 STDLIB

STDLIB Reference Manual regexp

fok, FieldListg to indicate that the string has been split up into the fields of
FieldList.

ferror, Errorg if there is an error in RegExp.

sh to awk(ShRegExp) -> AwkRegExp

Types:

� ShRegExp AwkRegExp = string()
� SubRes = fok,NewString,RepCountg | ferror,errordesc()g
� RepCount = integer()

Converts the sh type regular expression ShRegExp into a full AWK regular expression.
Returns the converted regular expression string. sh expressions are used in the shell for
matching file names and have the following special characters:

* matches any string including the null string.

? matches any single character.

[...] matches any of the enclosed characters. Character ranges are specified by a pair
of characters separated by a -. If the first character after [is a !, then any character
not enclosed is matched.

It may sometimes be more practical to use sh type expansions as they are simpler and
easier to use, even though they are not as powerful.

parse(RegExp) -> ParseRes

Types:

� RegExp = string()
� ParseRes = fok,REg | ferror,errordesc()g

Parses the regular expression RegExp and builds the internal representation used in the
other regular expression functions. Such representations can be used in all of the other
functions instead of a regular expression string. This is more efficient when the same
regular expression is used in many strings. It returns:

fok, REg if RegExp is correct and RE is the internal representation.

ferror, Errorg if there is an error in RegExpString.

format error(ErrorDescriptor) -> string()

Types:

� ErrorDescriptor = errordesc()

Returns a string which describes the error ErrorDescriptor returned when there is an
error in a regular expression.

199STDLIB

regexp STDLIB Reference Manual

Regular Expressions

The regular expressions allowed here is a subset of the set found in egrep and in the
AWK programming language, as defined in the book, The AWK Programming Language,
by A. V. Aho, B. W. Kernighan, P. J. Weinberger. They are composed of the
following characters:

c matches the non-metacharacter c.

\c matches the escape sequence or literal character c.

. matches any character.

^ matches the beginning of a string.

$ matches the end of a string.

[abc...] character class, which matches any of the characters abc... Character ranges
are specified by a pair of characters separated by a -.

[^abc...] negated character class, which matches any character except abc....

r1 | r2 alternation. It matches either r1 or r2.

r1r2 concatenation. It matches r1 and then r2.

r+ matches one or more rs.

r* matches zero or more rs.

r? matches zero or one rs.

(r) grouping. It matches r.

The escape sequences allowed are the same as for Erlang strings:

\b backspace

\f form feed

\n newline (line feed)

\r carriage return

\t tab

\e escape

\v vertical tab

\s space

\d delete

\ddd the octal value ddd

\c any other character literally, for example \\ for backslash, \" for “)

To make these functions easier to use, in combination with the function io:get line
which terminates the input line with a new line, the $ characters also matches a string
ending with "...\n". The following examples define Erlang data types:

Atoms [a-z][0-9a-zA-Z]*

Variables [A-Z][0-9a-zA-Z]*

Floats (\+|-)?[0-9]+\.[0-9]+((E|e)(\+|-)?[0-9]+)?

200 STDLIB

STDLIB Reference Manual regexp

Regular expressions are written as Erlang strings when used with the functions in this
module. This means that any \ or " characters in a regular expression string must be
written with \ as they are also escape characters for the string. For example, the regular
expression string for Erlang floats is:
"(\\+|-)?[0-9]+\\.[0-9]+((E|e)(\\+|-)?[0-9]+)?".

It is not really necessary to have the escape sequences as part of the regular expression
syntax as they can always be generated directly in the string. They are included for
completeness and can they can also be useful when generating regular expressions, or
when they are entered other than with Erlang strings.

201STDLIB

sets STDLIB Reference Manual

sets
Erlang Module

Sets are collections of elements with no duplicate elements. The representation of a set
is not defined.

Exports

new() -> Set

Types:

� Set = set()

Returns a new empty ordered set.

is set(Set) -> bool()

Types:

� Set = term()

Returns true if Set is an ordered set of elements, otherwise false.

size(Set) -> int()

Types:

� Set = term()

Returns the number of elements in Set.

to list(Set) -> List

Types:

� Set = set()
� List = [term()]

Returns the elements of Set as a list.

from list(List) -> Set

Types:

� List = [term()]
� Set = set()

Returns an ordered set of the elements in List.

is element(Element, Set) -> bool()

202 STDLIB

STDLIB Reference Manual sets

Types:

� Element = term()
� Set = set()

Returns true if Element is an element of Set, otherwise false.

add element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = set()

Returns a new ordered set formed from Set1 with Element inserted.

del element(Element, Set1) -> Set2

Types:

� Element = term()
� Set1 = Set2 = set()

Returns Set1, but with Element removed.

union(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the merged (union) set of Set1 and Set2.

union(SetList) -> Set

Types:

� SetList = [set()]
� Set = set()

Returns the merged (union) set of the list of sets.

intersection(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the intersection of Set1 and Set2.

intersection(SetList) -> Set

Types:

� SetList = [set()]
� Set = set()

Returns the intersection of the non-empty list of sets.

subtract(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

203STDLIB

sets STDLIB Reference Manual

Returns only the elements of Set1 which are not also elements of Set2.

is subset(Set1, Set2) -> bool()

Types:

� Set1 = Set2 = set()

Returns true when every element of Set1 is also a member of Set2, otherwise false.

fold(Function, Acc0, Set) -> Acc1

Types:

� Function = fun (E, AccIn) -> AccOut
� Acc0 = Acc1 = AccIn = AccOut = term()
� Set = set()

Fold Function over every element in Set returning the final value of the accumulator.

filter(Pred, Set1) -> Set2

Types:

� Pred = fun (E) -> bool()
� Set1 = Set2 = set()

Filter elements in Set1 with boolean function Fun.

204 STDLIB

STDLIB Reference Manual shell

shell
Erlang Module

The module shell implements an Erlang shell.

The shell is a user interface program for entering expression sequences. The expressions
are evaluated and a value is returned. A history mechanism saves previous commands
and their values, which can then be incorporated in later commands. How many
commands and results to save can be determined by the user, either interactively, by
calling shell:history/1 and shell:results/1, or by setting the application
configuration parameters shell history length and shell saved results for the
application stdlib.

Variable bindings, and local process dictionary changes which are generated in user
expressions, are preserved and the variables can be used in later commands to access
their values. The bindings can also be forgotten so the variables can be re-used.

The special shell commands all have the syntax of (local) function calls. They are
evaluated as normal function calls and many commands can be used in one expression
sequence.

If a command (local function call) is not recognized by the shell, an attempt is first
made to find the function in the module user default, where customized local
commands can be placed. If found, then the function is evaluated. Otherwise, an
attempt is made to evaluate the function in the module shell default. The module
user default must be explicitly loaded.

The shell also permits the user to start multiple concurrent jobs. A job can be regarded
as a set of processes which can communicate with the shell.

The shell runs in two modes:

� Normal mode, in which commands can be edited and expressions evaluated

� Job Control Mode JCL, in which jobs can be started, killed, detached and
connected.

Only the currently connected job can ’talk’ to the shell.

205STDLIB

shell STDLIB Reference Manual

Shell Commands

b() Prints the current variable bindings.

f() Removes all variable bindings.

f(X) Removes the binding of variable X.

h() Prints the history list.

history(N) Sets the number of previous commands to keep in the history list to N.
The previous number is returned. The default number is 20.

results(N) Sets the number of results from previous commands to keep in the history
list to N. The previous number is returned. The default number is 20.

e(N) Repeats the command N, if N is positive. If it is negative, the Nth previous
command is repeated (i.e., e(-1) repeats the previous command).

v(N) Uses the return value of the command N in the current command.

help() Evaluates shell default:help().

c(File) Evaluates shell default:c(File). This compiles and loads code in File and
purges old versions of code, if necessary. Assumes that the file and module names
are the same.

Example

The following example is a long dialogue with the shell. Commands starting with > are
inputs to the shell. All other lines are output from the shell. All commands in this
example are explained at the end of the dialogue. .

strider 1> erl
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> Str = "abcd".
"abcd"
2> L = length(Str).
4
3> Descriptor = fL, list to atom(Str)g.
f4,abcdg
4> L.
4
5> b().
Descriptor = f4,abcdg
L = 4
Str = "abcd"
ok
6> f(L).
ok
7> b().
Descriptor = f4,abcdg
Str = "abcd"
ok
8> f(L).
ok

206 STDLIB

STDLIB Reference Manual shell

9> fL, g = Descriptor.
f4,abcdg
10> L.
4
11> fP, Q, Rg = Descriptor.
** exited: ffbadmatch,f4,abcdgg,ferl eval,expr,3gg **
12> P.
** exited: ffunbound,’P’g,ferl eval,expr,3gg **
13> Descriptor.
f4,abcdg
14> fP, Qg = Descriptor.
f4,abcdg
15> P.
4
16> f().
ok
17> put(aa, hello).
undefined
18> get(aa).
hello
19> Y = test1:demo(1).
11
20> get().
[faa,workedg]
21> put(aa, hello).
worked
22> Z = test1:demo(2).
** exited: ffbadmatch,1g,ftest1,demo,[2]gg **

=ERROR REPORT==== 24-Jan-1997::07:48:46 ===
!!! Error in process <0.22.0> with exit value: ffbadmatch,1g
,ftest1,demo,[2]gg
23> Z.
** exited: ffunbound,’Z’g,ferl eval,expr,3gg **
24> get(aa).
hello
25> erase(), put(aa, hello).
undefined
26> spawn(test1, demo, [1]).
<0.25.0>
27> get(aa).
hello
28> io:format("hello hello\n").
hello hello
ok
29> e(28).
hello hello
ok
30> v(28).
ok
31> test1:loop(0).
Hello Number: 0
Hello Number: 1

207STDLIB

shell STDLIB Reference Manual

Hello Number: 2
Hello Number: 3

User switch command
--> i
--> c

.

.

.
Hello Number: 3374
Hello Number: 3375
Hello Number: 3376
Hello Number: 3377
Hello Number: 3378
** exited: killed **
32> halt().
strider 2>

Comments

Command 1 sets the variable Str to the string "abcd".

Command 2 sets L to the length of the string evaluating the BIF atom to list.

Command 3 builds the tuple Descriptor.

Command 4 prints the value of the variable L.

Command 5 evaluates the internal shell command b(), which is an abbreviation of
“bindings”. This prints the current shell variables and their bindings. The ok at the end
is the return value of the b() function.

Command 6 f(L) evaluates the internal shell command f(L) (abbreviation of “forget”).
The value of the variable L is removed.

Command 7 prints the new bindings.

Command 8 shows that the value of L has disappeared from the bindings.

Command 9 performs a pattern matching operation on Descriptor, binding a new
value to L.

Command 10 prints the current value of L.

Command 11 tries to match fP, Q, Rg against Descriptor which is f4, abcg. The
match fails and none of the new variables become bound. The printout starting with
“** exited:” is not the value of the expression (the expression had no value because its
evaluation failed), but rather a warning printed by the system to inform the user that an
error has occurred. The values of the other variables (L, Str, etc.) are unchanged.

Commands 12 and 13 show that P is unbound because the previous command failed,
and that Descriptor has not changed.

Commands 14 and 15 show a correct match where P and Q are bound.

Command 16 clears all bindings.

The next few commands assume that test1:demo(X) is defined in the following way:

208 STDLIB

STDLIB Reference Manual shell

demo(X) ->
put(aa, worked),
X = 1,
X + 10.

Commands 17 and 18 set and inspect the value of the item aa in the process dictionary.

Command 19 evaluates test1:demo(1). The evaluation succeeds and the changes
made in the process dictionary become visible to the shell. The new value of the
dictionary item aa can be seen in command 20.

Commands 21 and 22 change the value of the dictionary item aa to hello and call
test1:demo(2). Evaluation fails and the changes made to the dictionary in
test1:demo(2), before the error occurred, are discarded.

Commands 23 and 24 show that Z was not bound and that the dictionary item aa has
retained its original value.

Commands 25, 26 and 27 show the effect of evaluating test1:demo(1) in the
background. In this case, the expression is evaluated in a newly spawned process. Any
changes made in the process dictionary are local to the newly spawned process and
therefore not visible to the shell.

Commands 28, 29 and 30 use the history facilities of the shell.

Command 29 is e(28). This re-evaluates command 28. Command 30 is v(28). This
uses the value (result) of command 28. In the cases of a pure function (a function with
no side effects), the result is the same. For a function with side effects, the result can be
different.

For the next command, it is assumed that test1:loop(N) is defined in the following
way:

loop(N) ->
io:format("Hello Number: ~w~n", [N]),
loop(N+1).

Command 31 evaluates test1:loop(0), which puts the system into an infinite loop. At
this point the user types Control G, which suspends output from the current process,
which is stuck in a loop, and activates JCL mode. In JCL mode the user can start and
stop jobs.

In this particular case, the i command (“interrupt”) is used to terminate the looping
program, and the c command is used to connect to the shell again. Since the process
was running in the background before we killed it, there will be more printouts before
the “** exited: killed **” message is shown.

The halt() command exits the Erlang runtime system.

209STDLIB

shell STDLIB Reference Manual

JCL Mode

When the shell starts, it starts a single evaluator process. This process, together with any
local processes which it spawns, is referred to as a job. Only the current job, which is
said to be connected, can perform operations with standard IO. All other jobs, which
are said to be detached, are blocked if they attempt to use standard IO.

All jobs which do not use standard IO run in the normal way.

^G (Control G) detaches the current job and JCL mode is activated. The JCL mode
prompt is "-->". If "?" is entered at the prompt, the following help message is
displayed:

--> ?
c [nn] - connect to job
i [nn] - interrupt job
k [nn] - kill job
j - list all jobs
s - start local shell
r [node] - start remote shell
q - quit Erlang
? | h - this message

The JCL commands have the following meaning:

c [nn] Connects to job number <nn> or the current job. The standard shell is
resumed. Operations which use standard IO by the current job will be interleaved
with user inputs to the shell.

i [nn] Stops the current evaluator process for job number nn or the current job, but
does not kill the shell process. Accordingly, any variable bindings and the process
dictionary will be preserved and the job can be connected again. This command
can be used to interrupt an endless loop.

k [nn] Kills job number nn or the current job. All spawned processes in the job are
killed, provided they have not evaluated the group leader/1 BIF and are located
on the local machine. Processes spawned on remote nodes will not be killed.

j Lists all jobs. A list of all known jobs is printed. The current job name is prefixed
with ’*’.

s Starts a new job. This will be assigned the new index [nn] which can be used in
references.

r [node] Starts a remote job on node. This is used in distributed Erlang to allow a
shell running on one node to control a number of applications running on a
network of nodes.

q Quits Erlang.

? Displays this message.

210 STDLIB

STDLIB Reference Manual shell

Exports

history(N) -> integer()

Types:

� N = integer()

Sets the number of previous commands to keep in the history list to N. The previous
number is returned. The default number is 20.

results(N) -> integer()

Types:

� N = integer()

Sets the number of results from previous commands to keep in the history list to N. The
previous number is returned. The default number is 20.

211STDLIB

shell default STDLIB Reference Manual

shell default
Erlang Module

The functions in shell default are called when no module name is given in a shell
command.

Consider the following shell dialogue:

1 > lists:reverse("abc").
"cba"
2 > c(foo).
fok, foog

In command one, the module lists is called. In command two, no module name is
specified. The shell searches the modules user default followed by shell default for
the function foo/1.

shell default is intended for “system wide” customizations to the shell.
user-default is intended for “local” or individual user customizations.

Hint

To add your own commands to the shell, create a module called user default and add
the commands you want. Then add the following line as the first line in your .erlang
file in your home directory.

code:load abs("$PATH/user default").

$PATH is the directory where your user default module can be found.

212 STDLIB

STDLIB Reference Manual slave

slave
Erlang Module

This module provides functions for starting Erlang slave nodes. All slave nodes which
are started by a master will terminate automatically when the master terminates. All
TTY output produced at the slave will be sent back to the master node. File I/O is done
via the master.

Slave nodes on other hosts than the current one are started with the program rsh. The
user must be allowed to rsh to the remote hosts without being prompted for a
password. This can be arranged in a number of ways (refer to the rsh documentation
for details). A slave node started on the same host as the master inherits certain
environment values from the master, such as the current directory and the environment
variables. For what can be assumed about the environment when a slave is started on
another host, read the documentation for the rsh program.

An alternative to the rsh program can be specified on the command line to erl as
follows: -rsh Program.

The slave node should use the same file system at the master. At least, Erlang/OTP
should be installed in the same place on both computers and the same version of Erlang
should be used.

Currently, a node running on Windows NT can only start slave nodes on the host on
which it is running.

The master node must be alive.

Exports

start(Host)

Starts a slave node on the host Host. Host names need not necessarily be specified as
fully qualified names; short names can also be used. This is the same condition that
applies to names of distributed Erlang nodes. The name of the started node will be the
same as the node which executes the call, with the exception of the host name part of
the node name.

Return value: see start/3.

start link(Host)

Starts a slave node on the host Host in the same way as the start/1, except that the
slave node is linked to the currently executing process. If the process terminates, the
slave node also terminates.

Return value: see start/3.

start(Host, Name)

213STDLIB

slave STDLIB Reference Manual

Starts a slave node on the host Host with the name Name@Host.

Return value: see start/3.

start link(Host, Name)

Starts a slave node on the host Host in the same way as start/2, except that the slave
node is linked to the currently executing process. If that process terminates, the slave
node also terminates.

Return value: see start/3.

start(Host, Name, Args) -> fok, Nodeg | ferror, ErrorInfog

Starts a slave node with the name Name@Host on Host and passes the argument string
Args to the new node.

The slave node resets its user process so that all terminal I/O which is produced at the
slave is automatically relayed to the master. Also, the file process will be relayed to the
master.

The Args argument can be used for a variety of purposes. See erl(1). For example, the
following command line arguments can be passed to the slave:

� to set some environment variable on the slave

� to run some specific program on the slave

� to set some specific code path on the slave node.

As an example, suppose that we want to start a slave node at host H with the node name
Name@H, and we also want the slave node to have the following properties:

� directory Dir should be added to the code path;

� the Mnesia directory should be set to M;

� the unix DISPLAY environment variable should be set to the display of the master
node.

The following code is executed to achieve this:

E = " -env DISPLAY " ++ net_adm:localhost() ++ ":0 ",
Arg = "-mnesia_dir " ++ M ++ " -pa " ++ Dir ++ E,
slave:start(H, Name, Arg).

The start/3 call returns fok, Name@Hostg if successful, otherwise ferror, Reasong.
Reason can be one of:

timeout The master node failed to get in contact with the slave node. This can happen
in a number of circumstances:

� Erlang/OTP is not installed on the remote host
� the file system on the other host has a different structure to the the master
� the Erlang nodes have different cookies.

no rsh There is no rsh program on the computer.

falready running, Name@Hostg A node with the name Name@Host already exists.

start link(Host, Name, Args)

214 STDLIB

STDLIB Reference Manual slave

Starts a slave node on the host Host in the same way as the start/3, except that the
slave node is linked to the currently executing process. If that process terminates, the
slave node also terminates.

Return value: see start/3.

stop(Node)

Stops (kills) a node.

pseudo([Master | ServerList])

Calls pseudo(Master, ServerList). If we want to start a node from the command
line and set up a number of pseudo servers, an Erlang runtime system can be started as
follows:

% erl -name abc -s slave pseudo klacke@super x --

pseudo(Master, ServerList)

Starts a number of pseudo servers. A pseudo server is a server with a registered name
which does absolutely nothing but pass on all message to the real server which executes
at a master node. A pseudo server is an intermediary which only has the same registered
name as the real server.

For example, if we have started a slave node N and want to execute pxw graphics code on
this node, we can start the server pxw server as a pseudo server at the slave node. The
following code illustrates:

rpc:call(N, slave, pseudo, [node(), [pxw_server]]).

relay(Pid)

Runs a pseudo server. This function never returns any value and the process which
executes the function will receive messages. All messages received will simply be passed
on to Pid.

215STDLIB

sofs STDLIB Reference Manual

sofs
Erlang Module

The sofs module implements operations on finite sets and relations represented as sets.
Intuitively, a set is a collection of elements; every element belongs to the set, and the set
contains every element.

Given a set A and a sentence S(x), where x is a free variable, a new set B whose
elements are exactly those elements of A for which S(x) holds can be formed, this is
denoted B= fxinA: S(x)g. Sentences are expressed using the logical operators “for
some” (or “there exists”), “for all”, “and”, “or”, “not”. If the existence of a set containing
all the specified elements is known (as will always be the case in this module), we write
B= fx: S(x)g.

The unordered set containing the elements a, b and c is denoted fa,b,cg. This notation is
not to be confused with tuples. The ordered pair of a and b, with first coordinate a and
second coordinate b, is denoted (a,b). An ordered pair is an ordered set of two elements.
In this module ordered sets can contain one, two or more elements, and parentheses are
used to enclose the elements. Unordered sets and ordered sets are orthogonal, again in
this module; there is no unordered set equal to any ordered set.

The set that contains no elements is called the empty set. If two sets A and B contain the
same elements, then A is equal to B, denoted A=B. Two ordered sets are equal if they
contain the same number of elements and have equal elements at each coordinate. If a
set A contains all elements that B contains, then B is a subset of A. The union of two sets
A and B is the smallest set that contains all elements of A and all elements of B. The
intersection of two sets A and B is the set that contains all elements of A that belong to
B. Two sets are disjoint if their intersection is the empty set. The difference of two sets A
and B is the set that contains all elements of A that do not belong to B. The symmetric
difference of two sets is the set that contains those element that belong to either of the
two sets, but not both. The union of a collection of sets is the smallest set that contains
all the elements that belong to at least one set of the collection. The intersection of a
non-empty collection of sets is the set that contains all elements that belong to every set
of the collection.

The Cartesian product of two sets X and Y, denoted XY, is the set fa: a= (x,y) for some
xinX and for some yinYg. A relation is a subset of XY. Let R be a relation. The fact that
(x,y) belongs to R is written as xRy. Since relations are sets, the definitions of the last
paragraph (subset, union, and so on) apply to relations as well. The domain of R is the
set fx: xRy for some yinYg. The range of R is the set fy: xRy for some xinXg. The
converse of R is the set fa: a= (y,x) for some (x,y)inRg. If A is a subset of X, then the
image of A under R is the set fy: xRy for some xinAg, and if B is a subset of Y, then the
inverse image of B is the set fx: xRy for some yinBg. If R is a relation from X to Y and S
is a relation from Y to Z, then the relative product of R and S is the relation T from X to
Z defined so that xTz if and only if there exists an element y in Y such that xRy and
ySz. The restriction of R to A is the set S defined so that xSy if and only if there exists an
element x in A such that xRy. If X=Y then we call R a relation in X. The field of a
relation R in X is the union of the domain of R and the range of R. If R is a relation in

216 STDLIB

STDLIB Reference Manual sofs

X, and if S is defined so that xSy if xRy and not x=y, then S is the strict relation
corresponding to R, and vice versa, if S is a relation in X, and if R is defined so that xRy
if xSy or x=y, then R is the weak relation corresponding to S. A relation R in X is
reflexive if xRx for every element x of X; it is symmetric if xRy implies that yRx; and it is
transitive if xRy and yRz imply that xRz.

A function F is a relation, a subset of XY, such that the domain of F is equal to X and
such that for every x in X there is a unique element y in Y with (x,y) in F. The latter
condition can be formulated as follows: if xFy and xFz then y=z. In this module, it will
not be required that the domain of F be equal to X for a relation to be considered a
function. Instead of writing (x,y)inF or xFy, we write F(x)=y when F is a function, and
say that F maps x onto y, or that the value of F at x is y. Since functions are relations,
the definitions of the last paragraph (domain, range, and so on) apply to functions as
well. If the converse of a function F is a function F’, then F’ is called the inverse of F.
The relative product of two functions F1 and F2 is called the composite of F1 and F2 if
the range of F1 is a subset of the domain of F2.

Sometimes, when the range of a function is more important than the function itself, the
function is called a family. The domain of a family is called the index set, and the range
is called the indexed set. If x is a family from I to X, then x[i] denotes the value of the
function at index i. The notation “a family in X” is used for such a family. When the
indexed set is a set of subsets of a set X, then we call x a family of subsets of X. If x is a
family of subsets of X, then the union of the range of x is called the union of the family
x. If x is non-empty (the index set is non-empty), the intersection of the family x is the
intersection of the range of x. In this module, the only families that will be considered
are families of subsets of some set X; in the following the word “family” will be used for
such families of subsets.

A partition of a set X is a collection S of non-empty subsets of X whose union is X and
whose elements are pairwise disjoint. A relation in a set is an equivalence relation if it is
reflexive, symmetric and transitive. If R is an equivalence relation in X, and x is an
element of X, the equivalence class of x with respect to R is the set of all those elements
y of X for which xRy holds. The equivalence classes constitute a partitioning of X.
Conversely, if C is a partition of X, then the relation that holds for any two elements of
X if they belong to the same equivalence class, is an equivalence relation induced by the
partition C. If R is an equivalence relation in X, then the canonical map is the function
that maps every element of X onto its equivalence class.

Relations as defined above (as sets of ordered pairs) will from now on be referred to as
binary relations. We call a set of ordered sets (x[1],...,x[n]) an (n-ary) relation, and say
that the relation is a subset of the Cartesian product X[1]...X[n] where x[i] is an
element of X[i], 1<=i<=n. The projection of an n-ary relation R onto coordinate i is the
set fx[i]: (x[1],...,x[i],...,x[n]) in R for some x[j]inX[j], 1<=j<=n and not i=jg. The
projections of a binary relation R onto the first and second coordinates are the domain
and the range of R respectively. The relative product of binary relations can be
generalized to n-ary relations as follows. Let TR be a an ordered set (R[1],...,R[n]) of
binary relations from X to Y[i] and S a binary relation from (Y[1]...Y[n]) to Z. The
relative product of TR and S is the binary relation T from X to Z defined so that xTz if
and only if there exists an element y[i] in Y[i] for each 1<=i<=n such that xR[i]y[i]
and (y[1],...,y[n])Sz. Now let TR be a an ordered set (R[1],...,R[n]) of binary relations
from X[i] to Y[i] and S a subset of X[1]...X[n]. The multiple relative product of TR and
and S is defined to be the set fz: z= ((x[1],...,x[n]), (y[1],...,y[n])) for some
(x[1],...,x[n])inS and for some (x[i],y[i]) in R[i], 1<=i<=ng. The natural join of an
n-ary relation R and an m-ary relation S on coordinate i and j is defined to be the set fz:

217STDLIB

sofs STDLIB Reference Manual

z= (x[1],...,x[n], y[1],...,y[j-1],y[j+1],...,y[m]) for some (x[1],...,x[n])inR and for some
(y[1],...,y[m])inS such that x[i]=y[j]g.

The sets recognized by this module will be represented by elements of the relation Sets,
defined as the smallest set such that:

� for every atom T except ’ ’ and for every term X, (T,X) belongs to Sets (atomic
sets);

� ([’ ’],[]) belongs to Sets (the untyped empty set);

� for every tuple T= fT[1],...,T[n]g and for every tuple X= fX[1],...,X[n]g, if
(T[i],X[i]) belongs to Sets for every 1<=i<=n then (T,X) belongs to Sets (ordered
sets);

� for every term T, if X is the empty list or a non-empty sorted list [X[1],...,X[n]]
without duplicates such that (T,X[i]) belongs to Sets for every 1<=i<=n, then
([T],X) belongs to Sets (typed unordered sets).

An external set is an element in the range of Sets. A type is an element in the domain of
Sets. If S is an element (T,X) of Sets, then T is a valid type of X, T is the type of S, and
X is the external set of S. from term/2 [page 227] creates a set from a type and an
Erlang term turned into an external set.

The actual sets represented by Sets are the elements of the range of the function Set
from Sets to Erlang terms and sets of Erlang terms:

� Set(T,Term)= Term, where T is an atom;

� Set(fT[1],...,T[n]g,fX[1],...,X[n]g) = (Set(T[1],X[1]),...,Set(T[n],X[n]));

� Set([T],[X[1],...,X[n]]) = fSet(T,X[1]),...,Set(T,X[n])g;

� Set([T],[])= fg.

When there is no risk of confusion, elements of Sets will be identified with the sets they
represent. For instance, if U is the result of calling union/2 with S1 and S2 as
arguments, then U is said to be the union of S1 and S2. A more precise formulation
would be that Set(U) is the union of Set(S1) and Set(S2).

The types are used to implement the various conditions that sets need to fulfill. As an
example, consider the relative product of two sets R and S, and recall that the relative
product of R and S is defined if R is a binary relation to Y and S is a binary relation from
Y. The function that implements the relative product, relative product/2 [page 233],
checks that the arguments represent binary relations by matching [fA,Bg] against the
type of the first argument (Arg1 say), and [fC,Dg] against the type of the second
argument (Arg2 say). The fact that [fA,Bg] matches the type of Arg1 is to be
interpreted as Arg1 representing a binary relation from X to Y, where X is defined as all
sets Set(x) for some element x in Sets the type of which is A, and similarly for Y. In the
same way Arg2 is interpreted as representing a binary relation from W to Z. Finally it is
checked that B matches C, which is sufficient for ensuring that W is equal to Y. The
untyped empty set is handled separately: its type, [’ ’], matches the type of any
unordered set.

A few functions of this module (drestriction/3, family projection/2,
partition/2, partition family/2, projection/2, restriction/3,
substitution/2) accept Erlang functions as a means to modify each element of a given
unordered set. Such a function, called SetFun in the following, can be specified as a
function, a tuple fexternal, Fung, or an integer. The two latter alternatives are
optimizations; instead of a set, the argument presented to the function is an external

218 STDLIB

STDLIB Reference Manual sofs

set, which in the present implementation can be done more efficiently. This
optimization can however only be applied when the elements of the unordered set are
atomic or ordered sets. It must also be the case that the type of the elements matches
some clause of Fun (the type of the created set is the result of applying Fun to the type
of the given set), and that Fun does nothing but selecting, duplicating or rearranging
parts of the elements. Specifying a SetFun as an integer I is equivalent to specifying
fexternal, fun(X)-> element(I,X)g, but is to be preferred since it makes it possible
to handle this case even more efficiently. Examples of SetFuns:

fsofs, uniong
fun(S) -> sofs:partition(1, S) end
fexternal, fun(A) -> A endg
fexternal, fun(fA, ,Cg) -> fC,Ag endg
fexternal, fun(f ,f ,Cgg) -> C endg
fexternal, fun(f ,f ,f ,Eg=Cgg) -> fE,fE,Cgg endg
2

The order in which functions are applied to elements is not specified, and may change
in future versions of sofs.

The execution time of the functions of this module is dominated by the time it takes to
sort lists. When no sorting is needed, the execution time is in the worst case
proportional to the sum of the sizes of the input arguments and the returned value. A
few functions execute in constant time: from external, is empty set, is set,
is sofs set, to external, type.

The functions of this module exit the process with a badarg, bad function, or
type mismatch message when given badly formed arguments or sets the types of which
are not compatible.

Types

anyset() = -an unordered, ordered or atomic set-
binary relation() = -a binary relation-
bool() = true | false
external set() = -an external set-
family() = -a family (of subsets)-
function() = -a function-
ordset() = -an ordered set-
relation() = -an n-ary relation-
set() = -an unordered set-
set of sets() = -an unordered set of set()-
set fun() = integer() >= 1

| fexternal, fun(external set()) -> external set()g
| fun(anyset()) -> anyset()

spec fun() = fexternal, fun(external set()) -> bool()g
| fun(anyset()) -> bool()

type() = -a type-

Exports

a function(Tuples [, Type]) -> Function

Types:

219STDLIB

sofs STDLIB Reference Manual

� Function = function()
� Tuples = [tuple()]
� Type = type()

Creates a function [page 217]. a function(F, T) is equivalent to from term(F, T), if
the result is a function. If no type [page 218] is explicitly given, [fatom,atomg] is used
as type of the function.

canonical relation(SetOfSets) -> BinRel

Types:

� BinRel = binary relation()
� SetOfSets = set of sets()

Returns the binary relation containing the elements (E,Set) such that Set belongs to
SetOfSets and E belongs to Set. If SetOfSets is a partition [page 217] of a set X and R
is the equivalence relation in X induced by SetOfSets, then the returned relation is the
canonical map [page 217] from X onto the equivalence classes with respect to R.

1> Ss = sofs:from term([[a,b],[b,c]]),
CR = sofs:canonical relation(Ss),
sofs:to external(CR).
[fa,[a,b]g,fb,[a,b]g,fb,[b,c]g,fc,[b,c]g]

composite(Function1, Function2) -> Function3

Types:

� Function1 = Function2 = Function3 = function()

Returns the composite [page 217] of the functions Function1 and Function2.

1> F1 = sofs:a function([fa,1g,fb,2g,fc,2g]),
F2 = sofs:a function([f1,xg,f2,yg,f3,zg]),
F = sofs:composite(F1, F2),
sofs:to external(F).
[fa,xg,fb,yg,fc,yg]

constant function(Set, AnySet) -> Function

Types:

� AnySet = anyset()
� Function = function()
� Set = set()

Creates the function [page 217] that maps each element of the set Set onto AnySet.

1> S = sofs:set([a,b]),
E = sofs:from term(1),
R = sofs:constant function(S, E),
sofs:to external(R).
[fa,1g,fb,1g]

converse(BinRel1) -> BinRel2

Types:

� BinRel1 = BinRel2 = binary relation()

220 STDLIB

STDLIB Reference Manual sofs

Returns the converse [page 216] of the binary relation BinRel1.

1> R1 = sofs:relation([f1,ag,f2,bg,f3,ag]),
R2 = sofs:converse(R1),
sofs:to external(R2).
[fa,1g,fa,3g,fb,2g]

difference(Set1, Set2) -> Set3

Types:

� Set1 = Set2 = Set3 = set()

Returns the difference [page 216] of the sets Set1 and Set2.

digraph to family(Graph [, Type]) -> Family

Types:

� Graph = digraph() -see digraph(3)-
� Family = family()
� Type = type()

Creates a family [page 217] from the directed graph Graph. Each vertex a of Graph is
represented by a pair (a,fb[1],...,b[n]g) where the b[i]’s are the out-neighbours of a.
digraph to family(G) is equivalent to digraph to family(G, [fatom,[atom]g]). It
is assumed that Type is a valid type [page 218] of the external set of the family.

If G is a directed graph, it holds that the vertices and edges of G are the same as the
vertices and edges of family to digraph(digraph to family(G)).

domain(BinRel) -> Set

Types:

� BinRel = binary relation()
� Set = set()

Returns the domain [page 216] of the binary relation BinRel.

1> R = sofs:relation([f1,ag,f1,bg,f2,bg,f2,cg]),
S = sofs:domain(R),
sofs:to external(S).
[1,2]

drestriction(BinRel1, Set) -> BinRel2

Types:

� BinRel1 = BinRel2 = binary relation()
� Set = set()

Returns the difference between the binary relation BinRel1 and the restriction [page
216] of BinRel1 to Set; drestriction(R, S) is equivalent to difference(R,
restriction(R, S)).

1> R1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
S = sofs:set([2,4,6]),
R2 = sofs:drestriction(R1, S),
sofs:to external(R2).
[f1,ag,f3,cg]

221STDLIB

sofs STDLIB Reference Manual

drestriction(SetFun, Set1, Set2) -> Set3

Types:

� SetFun = set fun()
� Set1 = Set2 = Set3 = set()

Returns a subset of Set1 containing those elements that do not yield an element in Set2
as the result of applying SetFun; drestriction(F, S1, S2) is equivalent to
difference(S1, restriction(F, S1, S2)).

1> SetFun = fexternal, fun(f A,B,Cg) -> fB,Cg endg,
R1 = sofs:relation([fa,aa,1g,fb,bb,2g,fc,cc,3g]),
R2 = sofs:relation([fbb,2g,fcc,3g,fdd,4g]),
R3 = sofs:drestriction(SetFun, R1, R2),
sofs:to external(R3).
[fa,aa,1g]

empty set() -> Set

Types:

� Set = set()

Returns the untyped empty set [page 218]. empty set() is equivalent to
from term([], [’ ’]).

family(Tuples [, Type]) -> Family

Types:

� Family = family()
� Tuples = [tuple()]
� Type = type()

Creates a family of subsets [page 217]. family(F, T) is equivalent to from term(F,
T), if the result is a family. If no type [page 218] is explicitly given, [fatom,[atom]g] is
used as type of the family.

family difference(Family1, Family2) -> Family3

Types:

� Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 217], then Family3 the family such that the
index set is equal to the index set of Family1, and Family3[i] is the difference between
Family1[i] and Family2[i] if Family2 maps i, Family1[i] otherwise.

1> F1 = sofs:family([fa,[1,2]g,fb,[3,4]g]),
F2 = sofs:family([fb,[4,5]g,fc,[6,7]g]),
F3 = sofs:family difference(F1, F2),
sofs:to external(F3).
[fa,[1,2]g,fb,[3]g]

family domain(Family1) -> Family2

Types:

� Family1 = Family2 = family()

222 STDLIB

STDLIB Reference Manual sofs

If Family1 is a family [page 217] and Family1[i] is a binary relation for every i in the
index set of Family1, then Family2 is the family with the same index set as Family1
such that Family2[i] is the domain [page 216] of Family1[i].

1> FR = sofs:from term([fa,[f1,ag,f2,bg,f3,cg]g,fb,[]g,fc,[f4,dg,f5,eg]g]),
F = sofs:family domain(FR),
sofs:to external(F).
[fa,[1,2,3]g,fb,[]g,fc,[4,5]g]

family field(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 217] and Family1[i] is a binary relation for every i in the
index set of Family1, then Family2 is the family with the same index set as Family1
such that Family2[i] is the field [page 216] of Family1[i]; family field(Family1) is
equivalent to family union(family domain(Family1), family range(Family1)).

1> FR = sofs:from term([fa,[f1,ag,f2,bg,f3,cg]g,fb,[]g,fc,[f4,dg,f5,eg]g]),
F = sofs:family field(FR),
sofs:to external(F).
[fa,[1,2,3,a,b,c]g,fb,[]g,fc,[4,5,d,e]g]

family intersection(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 217] and Family1[i] is a set of sets for every i in the index
set of Family1, then Family2 is the family with the same index set as Family1 such that
Family2[i] is the intersection [page 216] of Family1[i].

If Family1[i] is an empty set for some i, then the process exits with a badarg message.

1> F1 = sofs:from term([fa,[[1,2,3],[2,3,4]]g,fb,[[x,y,z],[x,y]]g]),
F2 = sofs:family intersection(F1),
sofs:to external(F2).
[fa,[2,3]g,fb,[x,y]g]

family intersection(Family1, Family2) -> Family3

Types:

� Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 217], then Family3 is the family such that the
index set is the intersection of Family1’s and Family2’s index sets, and Family3[i] is the
intersection of Family1[i] and Family2[i].

1> F1 = sofs:family([fa,[1,2]g,fb,[3,4]g,fc,[5,6]g]),
F2 = sofs:family([fb,[4,5]g,fc,[7,8]g,fd,[9,10]g]),
F3 = sofs:family intersection(F1, F2),
sofs:to external(F3).
[fb,[4]g,fc,[]g]

family projection(SetFun, Family1) -> Family2

223STDLIB

sofs STDLIB Reference Manual

Types:

� SetFun = set fun()
� Family1 = Family2 = family()
� Set = set()

If Family1 is a family [page 217] then Family2 is the family with the same index set as
Family1 such that Family2[i] is the result of calling SetFun with Family1[i] as argument.

1> F1 = sofs:from term([fa,[[1,2],[2,3]]g,fb,[[]]g]),
F2 = sofs:family projection(fsofs, uniong, F1),
sofs:to external(F2).
[fa,[1,2,3]g,fb,[]g]

family range(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 217] and Family1[i] is a binary relation for every i in the
index set of Family1, then Family2 is the family with the same index set as Family1
such that Family2[i] is the range [page 216] of Family1[i].

1> FR = sofs:from term([fa,[f1,ag,f2,bg,f3,cg]g,fb,[]g,fc,[f4,dg,f5,eg]g]),
F = sofs:family range(FR),
sofs:to external(F).
[fa,[a,b,c]g,fb,[]g,fc,[d,e]g]

family specification(Fun, Family1) -> Family2

Types:

� Fun = spec fun()
� Family1 = Family2 = family()

If Family1 is a family [page 217], then Family2 is the restriction [page 216] of Family1
to those elements i of the index set for which Fun applied to Family1[i] returns true. If
Fun is a tuple fexternal, Fun2g, Fun2 is applied to the external set [page 218] of
Family1[i], otherwise Fun is applied to Family1[i].

1> F1 = sofs:family([fa,[1,2,3]g,fb,[1,2]g,fc,[1]g]),
SpecFun = fun(S) -> sofs:no elements(S) =:= 2 end,
F2 = sofs:family specification(SpecFun, F1),
sofs:to external(F2).
[fb,[1,2]g]

family to digraph(Family [, GraphType]) -> Graph

Types:

� Graph = digraph()
� Family = family()
� GraphType = -see digraph(3)-

224 STDLIB

STDLIB Reference Manual sofs

Creates a directed graph from the family [page 217] Family. For each pair
(a,fb[1],...,b[n]g) of Family, the vertex a as well the edges (a,b[i]) for 1<=i<=n are
added to a newly created directed graph.

If no graph type is given, digraph:new/1 is used for creating the directed graph,
otherwise the GraphType argument is passed on as second argument to digraph:new/2.

It F is a family, it holds that F is a subset of
digraph to family(family to digraph(F), type(F)). Equality holds if
union of family(F) is a subset of domain(F).

Creating a cycle in an acyclic graph exits the process with a cyclic message.

family to relation(Family) -> BinRel

Types:

� Family = family()
� BinRel = binary relation()

If Family is a family [page 217], then BinRel is the binary relation containing all pairs
(i,x) such that i belongs to the index set of Family and x belongs to Family[i].

1> F = sofs:family([fa,[]g, fb,[1]g, fc,[2,3]g]),
R = sofs:family to relation(F),
sofs:to external(R).
[fb,1g,fc,2g,fc,3g]

family union(Family1) -> Family2

Types:

� Family1 = Family2 = family()

If Family1 is a family [page 217] and Family1[i] is a set of sets for each i in the index set
of Family1, then Family2 is the family with the same index set as Family1 such that
Family2[i] is the union [page 216] of Family1[i]; family union(F) is equivalent to
family projection(fsofs,uniong, F).

1> F1 = sofs:from term([fa,[[1,2],[2,3]]g,fb,[[]]g]),
F2 = sofs:family union(F1),
sofs:to external(F2).
[fa,[1,2,3]g,fb,[]g]

family union(Family1, Family2) -> Family3

Types:

� Family1 = Family2 = Family3 = family()

If Family1 and Family2 are families [page 217], then Family3 is the family such that the
index set is the union of Family1’s and Family2’s index sets, and Family3[i] is the union
of Family1[i] and Family2[i] if both maps i, Family1[i] or Family2[i] otherwise.

1> F1 = sofs:family([fa,[1,2]g,fb,[3,4]g,fc,[5,6]g]),
F2 = sofs:family([fb,[4,5]g,fc,[7,8]g,fd,[9,10]g]),
F3 = sofs:family union(F1, F2),
sofs:to external(F3).
[fa,[1,2]g,fb,[3,4,5]g,fc,[5,6,7,8]g,fd,[9,10]g]

225STDLIB

sofs STDLIB Reference Manual

field(BinRel) -> Set

Types:

� BinRel = binary relation()
� Set = set()

Returns the field [page 216] of the binary relation BinRel; field(R) is equivalent to
union(domain(R), range(R)).

1> R = sofs:relation([f1,ag,f1,bg,f2,bg,f2,cg]),
S = sofs:field(R),
sofs:to external(S).
[1,2,a,b,c]

from external(ExternalSet, Type) -> AnySet

Types:

� ExternalSet = external set()
� AnySet = anyset()
� Type = type()

Creates a set from the external set [page 218] ExternalSet and the type [page 218]
Type. It is assumed that Type is a valid type [page 218] of ExternalSet.

from sets(ListOfSets) -> Set

Types:

� Set = set()
� ListOfSets = [anyset()]

Returns the unordered set [page 218] containing the sets of the list ListOfSets.

1> S1 = sofs:relation([fa,1g,fb,2g]),
S2 = sofs:relation([fx,3g,fy,4g]),
S = sofs:from sets([S1,S2]),
sofs:to external(S).
[[fa,1g,fb,2g],[fx,3g,fy,4g]]

from sets(TupleOfSets) -> Ordset

Types:

� Ordset = ordset()
� TupleOfSets = tuple-of(anyset())

Returns the ordered set [page 218] containing the sets of the non-empty tuple
TupleOfSets.

from term(Term [, Type]) -> AnySet

Types:

� AnySet = anyset()
� Term = term()
� Type = type()

226 STDLIB

STDLIB Reference Manual sofs

Creates an element of Sets [page 218] by traversing the term Term, sorting lists,
removing duplicates and deriving or verifying a valid type [page 218] for the so
obtained external set. from term(T) is equivalent to from term(T, [’ ’]). An
explicitly given type [page 218] Type can be used to limit the depth of the traversal; an
atomic type stops the traversal, as demonstrated by this example where “foo” and
f“foo”g are left unmodified:

1> S = sofs:from term([ff"foo"g,[1,1]g,f"foo",[2,2]g], [fatom,[atom]g]),
sofs:to external(S).
[ff"foo"g,[1]g,f"foo",[2]g]

from term can be used for creating atomic or ordered sets. The only purpose of such a
set is that of later building unordered sets since all functions in this module that do
anything operate on unordered sets. Creating unordered sets from a collection of
ordered sets may be the way to go if the ordered sets are big and one does not want to
waste heap by rebuilding the elements of the unordered set. An example showing that a
set can be built “layer by layer”:

1> A = sofs:from term(a),
S = sofs:set([1,2,3]),
P1 = sofs:from sets(fA,Sg),
P2 = sofs:from term(fb,[6,5,4]g),
Ss = sofs:from sets([P1,P2]),
sofs:to external(Ss).
[fa,[1,2,3]g,fb,[4,5,6]g]

Other functions that create sets are from external/2 and from sets/1. Special cases
of from term/2 are a function/1,2, empty set/0, family/1,2, relation/1,2, and
set/1,2.

image(BinRel, Set1) -> Set2

Types:

� BinRel = binary relation()
� Set1 = Set2 = set()

Returns the image [page 216] of the set Set1 under the binary relation BinRel.

1> R = sofs:relation([f1,ag,f2,bg,f2,cg,f3,dg]),
S1 = sofs:set([1,2]),
S2 = sofs:image(R, S1),
sofs:to external(S2).
[a,b,c]

intersection(SetOfSets) -> Set

Types:

� Set = set()
� SetOfSets = set of sets()

Returns the intersection [page 216] of the set of sets SetOfSets.

Intersecting an empty set of sets exits the process with a badarg message.

intersection(Set1, Set2) -> Set3

Types:

227STDLIB

sofs STDLIB Reference Manual

� Set1 = Set2 = Set3 = set()

Returns the intersection [page 216] of Set1 and Set2.

intersection of family(Family) -> Set

Types:

� Family = family()
� Set = set()

Returns the intersection of the family [page 217] Family.

Intersecting an empty family exits the process with a badarg message.

1> F = sofs:family([fa,[0,2,4]g,fb,[0,1,2]g,fc,[2,3]g]),
S = sofs:intersection of family(F),
sofs:to external(S).
[2]

inverse(Function1) -> Function2

Types:

� Function1 = Function2 = function()

Returns the inverse [page 217] of the function Function1.

1> R1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
R2 = sofs:inverse(R1),
sofs:to external(R2).
[fa,1g,fb,2g,fc,3g]

inverse image(BinRel, Set1) -> Set2

Types:

� BinRel = binary relation()
� Set1 = Set2 = set()

Returns the inverse image [page 216] of Set1 under the binary relation BinRel.

1> R = sofs:relation([f1,ag,f2,bg,f2,cg,f3,dg]),
S1 = sofs:set([c,d,e]),
S2 = sofs:inverse image(R, S1),
sofs:to external(S2).
[2,3]

is a function(BinRel) -> Bool

Types:

� Bool = bool()
� BinRel = binary relation()

Returns true if the binary relation BinRel is a function [page 217] or the untyped
empty set, false otherwise.

is disjoint(Set1, Set2) -> Bool

Types:

228 STDLIB

STDLIB Reference Manual sofs

� Bool = bool()
� Set1 = Set2 = set()

Returns true if Set1 and Set2 are disjoint [page 216], false otherwise.

is empty set(AnySet) -> Bool

Types:

� AnySet = anyset()
� Bool = bool()

Returns true if Set is an empty unordered set, false otherwise.

is equal(AnySet1, AnySet2) -> Bool

Types:

� AnySet1 = AnySet2 = anyset()
� Bool = bool()

Returns true if the AnySet1 and AnySet2 are equal [page 216], false otherwise.

is set(AnySet) -> Bool

Types:

� AnySet = anyset()
� Bool = bool()

Returns true if AnySet is an unordered set [page 218], and false if AnySet is an
ordered set or an atomic set.

is sofs set(Term) -> Bool

Types:

� Bool = bool()
� Term = term()

Returns true if Term is an unordered set [page 218], an ordered set or an atomic set,
false otherwise.

is subset(Set1, Set2) -> Bool

Types:

� Bool = bool()
� Set1 = Set2 = set()

Returns true if Set1 is a subset [page 216] of Set2, false otherwise.

is type(Term) -> Bool

Types:

� Bool = bool()
� Term = term()

Returns true if the term Term is a type [page 218].

join(Relation1, I, Relation2, J) -> Relation3

229STDLIB

sofs STDLIB Reference Manual

Types:

� Relation1 = Relation2 = Relation3 = relation()
� I = J = integer() > 0

Returns the natural join [page 217] of the relations Relation1 and Relation2 on
coordinates I and J.

1> R1 = sofs:relation([fa,x,1g,fb,y,2g]),
R2 = sofs:relation([f1,f,gg,f1,h,ig,f2,3,4g]),
J = sofs:join(R1, 3, R2, 1),
sofs:to external(J).
[fa,x,1,f,gg,fa,x,1,h,ig,fb,y,2,3,4g]

multiple relative product(TupleOfBinRels, BinRel1) -> BinRel2

Types:

� TupleOfBinRels = tuple-of(BinRel)
� BinRel = BinRel1 = BinRel2 = binary relation()

If TupleOfBinRels is a non-empty tuple fR[1],...,R[n]g of binary relations and BinRel1
is a binary relation, then BinRel2 is the multiple relative product [page 217] of the
ordered set (R[i],...,R[n]) and BinRel1.

1> Ri = sofs:relation([fa,1g,fb,2g,fc,3g]),
R = sofs:relation([fa,bg,fb,cg,fc,ag]),
MP = sofs:multiple relative product(fRi, Rig, R),
sofs:to external(sofs:range(MP)).
[f1,2g,f2,3g,f3,1g]

no elements(ASet) -> NoElements

Types:

� ASet = set() | ordset()
� NoElements = integer() >= 0

Returns the number of elements of the ordered or unordered set ASet.

partition(SetOfSets) -> Partition

Types:

� SetOfSets = set of sets()
� Partition = set()

Returns the partition [page 217] of the union of the set of sets SetOfSets such that two
elements are considered equal if they are members of the same elements of SetOfSets.

1> Sets1 = sofs:from term([[a,b,c],[d,e,f],[g,h,i]]),
Sets2 = sofs:from term([[b,c,d],[e,f,g],[h,i,j]]),
P = sofs:partition(sofs:union(Sets1, Sets2)),
sofs:to external(P).
[[a],[b,c],[d],[e,f],[g],[h,i],[j]]

partition(SetFun, Set) -> Partition

Types:

230 STDLIB

STDLIB Reference Manual sofs

� SetFun = set fun()
� Partition = set()
� Set = set()

Returns the partition [page 217] of Set such that two elements are considered equal if
the results of applying SetFun are equal.

1> Ss = sofs:from term([[a],[b],[c,d],[e,f]]),
SetFun = fun(S) -> sofs:from term(sofs:no elements(S)) end,
P = sofs:partition(SetFun, Ss),
sofs:to external(P).
[[[a],[b]],[[c,d],[e,f]]]

partition family(SetFun, Set) -> Family

Types:

� Family = family()
� SetFun = set fun()
� Set = set()

Returns the family [page 217] Family where the indexed set is a partition [page 217] of
Set such that two elements are considered equal if the results of applying SetFun are the
same value i. This i is the index that Family maps onto the equivalence class [page 217].

1> S = sofs:relation([fa,a,a,ag,fa,a,b,bg,fa,b,b,bg]),
SetFun = fexternal, fun(fA, ,C, g) -> fA,Cg endg,
F = sofs:partition family(SetFun, S),
sofs:to external(F).
[ffa,ag,[fa,a,a,ag]g,ffa,bg,[fa,a,b,bg,fa,b,b,bg]g]

product(TupleOfSets) -> Relation

Types:

� Relation = relation()
� TupleOfSets = tuple-of(set())

Returns the Cartesian product [page 217] of the non-empty tuple of sets TupleOfSets.
If (x[1],...,x[n]) is an element of the n-ary relation Relation, then x[i] is drawn from
element i of TupleOfSets.

1> S1 = sofs:set([a,b]),
S2 = sofs:set([1,2]),
S3 = sofs:set([x,y]),
P3 = sofs:product(fS1,S2,S3g),
sofs:to external(P3).
[fa,1,xg,fa,1,yg,fa,2,xg,fa,2,yg,fb,1,xg,fb,1,yg,fb,2,xg,fb,2,yg]

product(Set1, Set2) -> BinRel

Types:

� BinRel = binary relation()
� Set1 = Set2 = set()

Returns the Cartesian product [page 216] of Set1 and Set2. product(S1, S2) is
equivalent to product(fS1, S2g).

231STDLIB

sofs STDLIB Reference Manual

1> S1 = sofs:set([1,2]),
S2 = sofs:set([a,b]),
R = sofs:product(S1, S2),
sofs:to external(R).
[f1,ag,f1,bg,f2,ag,f2,bg]

projection(SetFun, Set1) -> Set2

Types:

� SetFun = set fun()
� Set1 = Set2 = set()

Returns the set created by substituting each element of Set1 by the result of applying
SetFun to the element.

If SetFun is a number i>=1 and Set1 is a relation, then the returned set is the projection
[page 217] of Set1 onto coordinate i.

1> S1 = sofs:from term([f1,ag,f2,bg,f3,ag]),
S2 = sofs:projection(2, S1),
sofs:to external(S2).
[a,b]

range(BinRel) -> Set

Types:

� BinRel = binary relation()
� Set = set()

Returns the range [page 216] of the binary relation BinRel.

1> R = sofs:relation([f1,ag,f1,bg,f2,bg,f2,cg]),
S = sofs:range(R),
sofs:to external(S).
[a,b,c]

relation(Tuples [, Type]) -> Relation

Types:

� N = integer()
� Type = N | type()
� Relation = relation()
� Tuples = [tuple()]

Creates a relation [page 216]. relation(R, T) is equivalent to from term(R, T), if T
is a type [page 218] and the result is a relation. If Type is an integer N, then
[fatom,...,atomg]), where the size of the tuple is N, is used as type of the relation. If
no type is explicitly given, the size of the first tuple of Tuples is used if there is such a
tuple. relation([]) is equivalent to relation([], 2).

relation to family(BinRel) -> Family

Types:

� Family = family()
� BinRel = binary relation()

232 STDLIB

STDLIB Reference Manual sofs

Returns the family [page 217] Family such that the index set is equal to the domain
[page 216] of the binary relation BinRel, and Family[i] is the image [page 216] of the
set of i under BinRel.

1> R = sofs:relation([fb,1g,fc,2g,fc,3g]),
F = sofs:relation to family(R),
sofs:to external(F).
[fb,[1]g,fc,[2,3]g]

relative product(TupleOfBinRels [, BinRel1]) -> BinRel2

Types:

� TupleOfBinRels = tuple-of(BinRel)
� BinRel = BinRel1 = BinRel2 = binary relation()

If TupleOfBinRels is a non-empty tuple fR[1],...,R[n]g of binary relations and BinRel1
is a binary relation, then BinRel2 is the relative product [page 217] of the ordered set
(R[i],...,R[n]) and BinRel1.

If BinRel1 is omitted, the relation of equality between the elements of the Cartesian
product [page 217] of the ranges of R[i], rangeR[1]...rangeR[n], is used instead
(intuitively, nothing is “lost”).

1> TR = sofs:relation([f1,ag,f1,aag,f2,bg]),
R1 = sofs:relation([f1,ug,f2,vg,f3,cg]),
R2 = sofs:relative product(fTR, R1g),
sofs:to external(R2).
[f1,fa,ugg,f1,faa,ugg,f2,fb,vgg]

Note that relative product(fR1g,R2) is different from relative product(R1,R2);
the tuple of one element is not identified with the element itself.

relative product(BinRel1, BinRel2) -> BinRel3

Types:

� BinRel1 = BinRel2 = BinRel3 = binary relation()

Returns the relative product [page 216] of the binary relations BinRel1 and BinRel2.

relative product1(BinRel1, BinRel2) -> BinRel3

Types:

� BinRel1 = BinRel2 = BinRel3 = binary relation()

Returns the relative product [page 216] of the converse [page 216] of the binary
relation BinRel1 and the binary relation BinRel2; relative product1(R1, R2) is
equivalent to relative product(converse(R1), R2), but is more efficient.

1> R1 = sofs:relation([f1,ag,f1,aag,f2,bg]),
R2 = sofs:relation([f1,ug,f2,vg,f3,cg]),
R3 = sofs:relative product1(R1, R2),
sofs:to external(R3).
[fa,ug,faa,ug,fb,vg]

restriction(BinRel1, Set) -> BinRel2

Types:

233STDLIB

sofs STDLIB Reference Manual

� BinRel1 = BinRel2 = binary relation()
� Set = set()

Returns the restriction [page 216] of the binary relation BinRel1 to Set.

1> R1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
S = sofs:set([1,2,4]),
R2 = sofs:restriction(R1, S),
sofs:to external(R2).
[f1,ag,f2,bg]

restriction(SetFun, Set1, Set2) -> Set3

Types:

� SetFun = set fun()
� Set1 = Set2 = Set3 = set()

Returns a subset of Set1 containing those elements that yield an element in Set2 as the
result of applying SetFun.

1> S1 = sofs:relation([f1,ag,f2,bg,f3,cg]),
S2 = sofs:set([b,c,d]),
S3 = sofs:restriction(2, S1, S2),
sofs:to external(S3).
[f2,bg,f3,cg]

set(Terms [, Type]) -> Set

Types:

� Set = set()
� Terms = [term()]
� Type = type()

Creates an unordered set [page 218]. set(L, T) is equivalent to from term(L, T), if
the result is an unordered set. If no type [page 218] is explicitly given, [atom] is used as
type of the set.

specification(Fun, Set1) -> Set2

Types:

� Fun = spec fun()
� Set1 = Set2 = set()

Returns the set containing every element of Set1 for which Fun returns true. If Fun is a
tuple fexternal, Fun2g, Fun2 is applied to the external set [page 218] of each
element, otherwise Fun is applied to each element.

1> R1 = sofs:relation([fa,1g,fb,2g]),
R2 = sofs:relation([fx,1g,fx,2g,fy,3g]),
S1 = sofs:from sets([R1,R2]),
S2 = sofs:specification(fsofs,is a functiong, S1),
sofs:to external(S2).
[[fa,1g,fb,2g]]

strict relation(BinRel1) -> BinRel2

234 STDLIB

STDLIB Reference Manual sofs

Types:

� BinRel1 = BinRel2 = binary relation()

Returns the strict relation [page 217] corresponding to the binary relation BinRel1.

1> R1 = sofs:relation([f1,1g,f1,2g,f2,1g,f2,2g]),
R2 = sofs:strict relation(R1),
sofs:to external(R2).
[f1,2g,f2,1g]

substitution(SetFun, Set1) -> Set2

Types:

� SetFun = set fun()
� Set1 = Set2 = set()

Returns a function, the domain of which is Set1. The value of an element of the domain
is the result of applying SetFun to the element.

1> L = [fa,1g,fb,2g].
[fa,1g,fb,2g]
2> sofs:to external(sofs:projection(1,sofs:relation(L))).
[a,b]
3> sofs:to external(sofs:substitution(1,sofs:relation(L))).
[ffa,1g,ag,ffb,2g,bg]
4> SetFun = fexternal, fun(fA, g=E) -> fE,Ag endg,
sofs:to external(sofs:projection(SetFun,sofs:relation(L))).
[ffa,1g,ag,ffb,2g,bg]

The relation of equality between the elements of fa,b,cg:

1> I = sofs:substitution(fun(A) -> A end, sofs:set([a,b,c])),
sofs:to external(I).
[fa,ag,fb,bg,fc,cg]

Let SetOfSets be a set of sets and BinRel a binary relation. The function that maps each
element Set of SetOfSets onto the image [page 216] of Set under BinRel is returned by
this function:

images(SetOfSets, BinRel) ->
Fun = fun(Set) -> sofs:image(BinRel, Set) end,
sofs:substitution(Fun, SetOfSets).

Here might be the place to reveal something that was more or less stated before, namely
that external unordered sets are represented as sorted lists. As a consequence, creating
the image of a set under a relation R may traverse all elements of R (to that comes the
sorting of results, the image). In images/2, BinRel will be traversed once for each
element of SetOfSets, which may take too long. The following efficient function could
be used instead, assuming that SetOfSets does not contain an empty set and that BinRel
is non-empty:

images2(SetOfSets, BinRel) ->
CR = sofs:canonical relation(SetOfSets),
R = sofs:relative product1(CR, BinRel),
sofs:relation to family(R).

symdiff(Set1, Set2) -> Set3

235STDLIB

sofs STDLIB Reference Manual

Types:

� Set1 = Set2 = Set3 = set()

Returns the symmetric difference [page 216] (or the Boolean sum) of Set1 and Set2.

1> S1 = sofs:set([1,2,3]),
S2 = sofs:set([2,3,4]),
P = sofs:symdiff(S1, S2),
sofs:to external(P).
[1,4]

symmetric partition(Set1, Set2) -> fSet3, Set4, Set5g

Types:

� Set1 = Set2 = Set3 = Set4 = Set5 = set()

Returns a triple of three sets: Set3 contains the elements of Set1 that do not belong to
Set2; Set4 contains the elements of Set1 that belong to Set2; Set5 contains the elements
of Set2 that do not belong to Set1.

to external(AnySet) -> ExternalSet

Types:

� ExternalSet = external set()
� AnySet = anyset()

Returns the external set [page 218] of an atomic, ordered or unordered set.

to sets(ASet) -> Sets

Types:

� ASet = set() | ordset()
� Sets = tuple of(AnySet) | [AnySet]

Returns the elements of the ordered set ASet as a tuple of sets, and the elements of the
unordered set ASet as a sorted list of sets without duplicates.

type(AnySet) -> Type

Types:

� AnySet = anyset()
� Type = type()

Returns the type [page 218] of an atomic, ordered or unordered set.

union(SetOfSets) -> Set

Types:

� Set = set()
� SetOfSets = set of sets()

Returns the union [page 216] of the set of sets SetOfSets.

union(Set1, Set2) -> Set3

Types:

236 STDLIB

STDLIB Reference Manual sofs

� Set1 = Set2 = Set3 = set()

Returns the union [page 216] of Set1 and Set2.

union of family(Family) -> Set

Types:

� Family = family()
� Set = set()

Returns the union of the family [page 217] Family.

1> F = sofs:family([fa,[0,2,4]g,fb,[0,1,2]g,fc,[2,3]g]),
S = sofs:union of family(F),
sofs:to external(S).
[0,1,2,3,4]

weak relation(BinRel1) -> BinRel2

Types:

� BinRel1 = BinRel2 = binary relation()

Returns a subset S of the weak relation [page 217] W corresponding to the binary
relation BinRel1. Let F be the field [page 216] of BinRel1. The subset S is defined so
that x S y if x W y for some x in F and for some y in F.

1> R1 = sofs:relation([f1,1g,f1,2g,f3,1g]),
R2 = sofs:weak relation(R1),
sofs:to external(R2).
[f1,1g,f1,2g,f2,2g,f3,1g,f3,3g]

See Also

dict(3) [page 71], digraph(3) [page 75], orddict(3) [page 185], ordsets(3) [page 186],
sets(3) [page 202]

237STDLIB

string STDLIB Reference Manual

string
Erlang Module

This module contains functions for string processing.

Exports

len(String) -> Length

Types:

� String = string()
� Length = integer()

Returns the number of characters in the string.

equal(String1, String2) -> bool()

Types:

� String1 = String2 = string()

Tests whether two strings are equal. Returns true if they are, otherwise false.

concat(String1, String2) -> String3

Types:

� String1 = String2 = String3 = string()

Concatenates two strings to form a new string. Returns the new string.

chr(String, Character) -> Index

rchr(String, Character) -> Index

Types:

� String = string()
� Character = char()
� Index = integer()

Returns the index of the first/last occurrence of Character in String. 0 is returned if
Character does not occur.

str(String, SubString) -> Index

rstr(String, SubString) -> Index

Types:

� String = SubString = string()

238 STDLIB

STDLIB Reference Manual string

� Index = integer()

Returns the position where the first/last occurrence of SubString begins in String. 0 is
returned if SubString does not exist in String. For example:

> string:str(" Hello Hello World World ", "Hello World").
8

span(String, Chars) -> Length

cspan(String, Chars) -> Length

Types:

� String = Chars = string()
� Length = integer()

Returns the length of the maximum initial segment of String, which consists entirely of
characters from (not from) Chars.

For example:

> string:span("\t abcdef", " \t").
5
> string:cspan("\t abcdef", " \t").
0

substr(String, Start) -> SubString

substr(String, Start, Length) -> Substring

Types:

� String = SubString = string()
� Start = Length = integer()

Returns a substring of String, starting at the position Start, and ending at the end of
the string or at length Length.

For example:

> substr("Hello World", 4, 5).
"lo Wo"

tokens(String, SeparatorList) -> Tokens

Types:

� String = SeparatorList = string()
� Tokens = [string()]

Returns a list of tokens in String, separated by the characters in SeparatorList.

For example:

> tokens("abc defxxghix jkl", "x ").
["abc", "def", "ghi", "jkl"]

chars(Character, Number) -> String

chars(Character, Number, Tail) -> String

Types:

� Character = char()

239STDLIB

string STDLIB Reference Manual

� Number = integer()
� String = string()

Returns a string consisting of Number of characters Character. Optionally, the string
can end with the string Tail.

copies(String, Number) -> Copies

Types:

� String = Copies = string()
� Number = integer()

Returns a string containing String repeated Number times.

words(String) -> Count

words(String, Character) -> Count

Types:

� String = string()
� Character = char()
� Count = integer()

Returns the number of words in String, separated by blanks or Character.

For example:

> words(" Hello old boy!", $o).
4

sub word(String, Number) -> Word

sub word(String, Number, Character) -> Word

Types:

� String = Word = string()
� Character = char()
� Number = integer()

Returns the word in position Number of String. Words are separated by blanks or
Characters.

For example:

> string:sub_word(" Hello old boy !",3,$o).
"ld b"

strip(String) -> Stripped

strip(String, Direction) -> Stripped

strip(String, Direction, Character) -> Stripped

Types:

� String = Stripped = string()
� Direction = left | right | both
� Character = char()

240 STDLIB

STDLIB Reference Manual string

Returns a string, where leading and/or trailing blanks or a number of Character have
been removed. Direction can be left, right, or both and indicates from which
direction blanks are to be removed. The function strip/1 is equivalent to
strip(String, both).

For example:

> string:strip("...Hello.....", both, $.).
"Hello"

left(String, Number) -> Left

left(String, Number, Character) -> Left

Types:

� String = Left = string()
� Character = char
� Number = integer()

Returns the String with the length adjusted in accordance with Number. The left
margin is fixed. If the length(String)< Number, String is padded with blanks or
Characters.

For example:

> string:left("Hello",10,$.).
"Hello....."

right(String, Number) -> Right

right(String, Number, Character) -> Right

Types:

� String = Right = string()
� Character = char
� Number = integer()

Returns the String with the length adjusted in accordance with Number. The right
margin is fixed. If the length of (String) < Number, String is padded with blanks or
Characters.

For example:

> string:right("Hello", 10, $.).
".....Hello"

centre(String, Number) -> Centered

centre(String, Number, Character) -> Centered

Types:

� String = Centered = string()
� Character = char
� Number = integer()

Returns a string, where String is centred in the string and surrounded by blanks or
characters. The resulting string will have the length Number.

sub string(String, Start) -> SubString

241STDLIB

string STDLIB Reference Manual

sub string(String, Start, Stop) -> SubString

Types:

� String = SubString = string()
� Start = Stop = integer()

Returns a substring of String, starting at the position Start to the end of the string, or
to and including the Stop position.

For example:

sub_string("Hello World", 4, 8).
"lo Wo"

Notes

Some of the general string functions may seem to overlap each other. The reason for
this is that this string package is the combination of two earlier packages and all the
functions of both packages have been retained.

The regular expression functions have been moved to their own module regexp (see
regexp [page 197]). The old entry points still exist for backwards compatibility, but will
be removed in a future release so that users are encouraged to use the module regexp.

Note:
Any undocumented functions in string should not be used.

242 STDLIB

STDLIB Reference Manual supervisor

supervisor
Erlang Module

A behaviour module for implementing a supervisor, a process which supervises other
processes called child processes. A child process can either be another supervisor or a
worker process. Worker processes are normally implemented using one of the
gen event, gen fsm, or gen server behaviours. A supervisor implemented using this
module will have a standard set of interface functions and include functionality for
tracing and error reporting. Supervisors are used to build an hierarchical process
structure called a supervision tree, a nice way to structure a fault tolerant application.
Refer to OTP Design Principles for more information.

A supervisor assumes the definition of which child processes to supervise to be located
in a callback module exporting a pre-defined set of functions.

Unless otherwise stated, all functions in this module will fail if the specified supervisor
does not exist or if bad arguments are given.

Supervision Principles

The supervisor is responsible for starting, stopping and monitoring its child processes.
The basic idea of a supervisor is that it should keep its child processes alive by restarting
them when necessary.

The children of a supervisor is defined as a list of child specifications. When the
supervisor is started, the child processes are started in order from left to right according
to this list. When the supervisor terminates, it first terminates its child processes in
reversed start order, from right to left.

A supervisor can have one of the following restart strategies:

� one for one - if one child process terminates and should be restarted, only that
child process is affected.

� one for all - if one child process terminates and should be restarted, all other
child processes are terminated and then all child processes are restarted.

� rest for one - if one child process terminates and should be restarted, the ’rest’ of
the child processes – i.e. the child processes after the terminated child process in
the start order – are terminated. Then the terminated child process and all child
processes after it are restarted.

� simple one for one - a simplified one for one supervisor, where all child
processes are dynamically added instances of the same process type, i.e. running
the same code.
The functions terminate child/2, delete child/2 and restart child/2 are
invalid for simple one for one supervisors and will return
ferror,simple one for oneg if the specified supervisor uses this restart strategy.

243STDLIB

supervisor STDLIB Reference Manual

To prevent a supervisor from getting into an infinite loop of child process terminations
and restarts, a maximum restart frequency is defined using two integer values MaxR and
MaxT. If more than MaxR restarts occur within MaxT seconds, the supervisor terminates
all child processes and then itself.

This is the type definition of a child specification:

child spec() = fId,StartFunc,Restart,Shutdown,Type,Modulesg
Id = term()
StartFunc = fM,F,Ag
M = F = atom()
A = [term()]
Restart = permanent | transient | temporary
Shutdown = brutal kill | int()>=0 | infinity
Type = worker | supervisor
Modules = [Module] | dynamic
Module = atom()

� Id is a name that is used to identify the child specification internally by the
supervisor.

� StartFunc defines the function call used to start the child process. It should be a
module-function-arguments tuple fM,F,Ag used as apply(M,F,A).

The start function must create and link to the child process, and should return
fok,Childg or fok,Child,Infog where Child is the pid of the child process and
Info an arbitrary term which is ignored by the supervisor.

The start function can also return ignore if the child process for some reason
cannot be started, in which case the child specification will be kept by the
supervisor but the non-existing child process will be ignored.

If something goes wrong, the function may also return an error tuple
ferror,Errorg.

Note that the start link functions of the different behaviour modules fulfill the
above requirements.

� Restart defines when a terminated child process should be restarted. A
permanent child process should always be restarted, a temporary child process
should never be restarted and a transient child process should be restarted only if
it terminates abnormally, i.e. with another exit reason than normal.

� Shutdown defines how a child process should be terminated. brutal kill means
the child process will be unconditionally terminated using exit(Child,kill). An
integer timeout value means that the supervisor will tell the child process to
terminate by calling exit(Child,shutdown) and then wait for an exit signal from
the child process. If no exit signal is received within the specified time, the child
process is unconditionally terminated using exit(Child,kill).
If the child process is another supervisor, Shutdown should be set to infinity to
give the subtree ample time to shutdown.

� Type specifies if the child process is a supervisor or a worker.

244 STDLIB

STDLIB Reference Manual supervisor

� Modules is used by the release handler during code replacement to determine
which processes are using a certain module. As a rule of thumb Modules should be
a list with one element [Module], where Module is the name of the callback
module, if the child process is a supervisor, gen server or gen fsm. If the child
process is an event manager (gen event) with a dynamic set of callback modules,
Modules should be dynamic. See SASL User’s Guide for more information.

� Internally, the supervisor also keeps track of the pid Child of the child process, or
undefined if no pid exists.

Exports

start link(Module, Args) -> Result

start link(SupName, Module, Args) -> Result

Types:

� SupName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Module = atom()
� Args = term()
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidgg | shutdown | term()

Creates a supervisor process, linked to the calling process, which calls Module:init/1
to find out about restart strategy, maximum restart frequency and child processes. To
ensure a synchronized start-up procedure, this function does not return until
Module:init/1 has returned and all child processes have been started.

If SupName=flocal,Nameg the supervisor is registered locally as Name using register/2.
If SupName=fglobal,Nameg the supervisor is registered globally as Name using
global:register name/2. If no name is provided, the supervisor is not registered. If
there already exists a process with the specified SupName the function returns
ferror,falready started,Pidgg, where Pid is the pid of that process.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the supervisor and its child processes are successfully created (i.e. if all child process
start functions return fok,Childg, fok,Child,Infog, or ignore) the function returns
fok,Pidg, where Pid is the pid of the supervisor.

If Module:init/1 returns ignore, this function returns ignore as well and the
supervisor terminates with reason normal. If Module:init/1 fails or returns an
incorrect value, this function returns ferror,Termg where Term is a term with
information about the error, and the supervisor terminates with reason Term.

If any child process start function fails or returns an error tuple or an erroneous value,
the function returns ferror,shutdowng and the supervisor terminates all started child
processes and then itself with reason shutdown.

start child(SupRef, ChildSpec) -> Result

Types:

245STDLIB

supervisor STDLIB Reference Manual

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� ChildSpec = child spec() | [term()]
� Result = fok,Childg | fok,Child,Infog | ferror,Errorg
� Child = pid() | undefined
� Info = term()
� Error = already present | falready started,Childg | term()

Dynamically adds a child specification to the supervisor SupRef which starts the
corresponding child process.

SupRef can be:

� the pid,

� Name, if the supervisor is locally registered,

� fName,Nodeg, if the supervisor is locally registered at another node, or

� fglobal,Nameg, if the supervisor is globally registered.

ChildSpec should be a valid child specification (unless the supervisor is a
simple one for one supervisor, see below). The child process will be started by using
the start function as defined in the child specification.

If the case of a simple one for one supervisor, the child specification defined in
Module:init/1 will be used and ChildSpec should instead be an arbitrary list of terms
List. The child process will then be started by appending List to the existing start
function arguments, i.e. by calling apply(M, F, A++List) where fM,F,Ag is the start
function defined in the child specification.

If there already exists a child specification with the specified Id, ChildSpec is discarded
and the function returns ferror,already presentg or
ferror,falready started,Childgg, depending on if the corresponding child process
is running or not.

If the child process start function returns fok,Childg or fok,Child,Infog, the child
specification and pid is added to the supervisor and the function returns the same value.

If the child process start function returns ignore, the child specification is added to the
supervisor, the pid is set to undefined and the function returns fok,undefinedg.

If the child process start function returns an error tuple or an erroneous value, or if it
fails, the child specification is discarded and the function returns ferror,Errorg where
Error is a term containing information about the error and child specification.

terminate child(SupRef, Id) -> Result

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term()
� Result = ok | ferror,Errorg
� Error = not found | simple one for one

246 STDLIB

STDLIB Reference Manual supervisor

Tells the supervisor SupRef to terminate the child process corresponding to the child
specification identified by Id. The process, if there is one, is terminated but the child
specification is kept by the supervisor. This means that the child process may be later be
restarted by the supervisor. The child process can also be restarted explicitly by calling
restart child/2. Use delete child/2 to remove the child specification.

See start child/2 for a description of SupRef.

If successful, the function returns ok. If there is no child specification with the specified
Id, the function returns ferror,not foundg.

delete child(SupRef, Id) -> Result

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term()
� Result = ok | ferror,Errorg
� Error = running | not found | simple one for one

Tells the supervisor SupRef to delete the child specification identified by Id. The
corresponding child process must not be running, use terminate child/2 to terminate
it.

See start child/2 for a description of SupRef.

If successful, the function returns ok. If the child specification identified by Id exists
but the corresponding child process is running, the function returns ferror,runningg.
If the child specification identified by Id does not exist, the function returns
ferror,not foundg.

restart child(SupRef, Id) -> Result

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term()
� Result = fok,Childg | fok,Child,Infog | ferror,Errorg
� Child = pid() | undefined
� Error = running | not found | simple one for one | term()

Tells the supervisor SupRef to restart a child process corresponding to the child
specification identified by Id. The child specification must exist and the corresponding
child process must not be running.

See start child/2 for a description of SupRef.

If the child specification identified by Id does not exist, the function returns
ferror,not foundg. If the child specification exists but the corresponding process is
already running, the function returns ferror,runningg.

If the child process start function returns fok,Childg or fok,Child,Infog, the pid is
added to the supervisor and the function returns the same value.

If the child process start function returns ignore, the pid remains set to undefined and
the function returns fok,undefinedg.

247STDLIB

supervisor STDLIB Reference Manual

If the child process start function returns an error tuple or an erroneous value, or if it
fails, the function returns ferror,Errorg where Error is a term containing information
about the error.

which children(SupRef) -> [fId,Child,Type,Modulesg]

Types:

� SupRef = Name | fName,Nodeg | fglobal,Nameg | pid()
� Name = Node = atom()
� Id = term() | undefined
� Child = pid() | undefined
� Type = worker | supervisor
� Modules = [Module] | dynamic
� Module = atom()

Returns a list with information about all child specifications and child processes
belonging to the supervisor SupRef.

See start child/2 for a description of SupRef.

The information given for each child specification/process is:

� Id - as defined in the child specification or undefined in the case of a
simple one for one supervisor.

� Child - the pid of the corresponding child process, or undefined if there is no
such process.

� Type - as defined in the child specification.

� Modules - as defined in the child specification.

check childspecs([ChildSpec]) -> Result

Types:

� ChildSpec = child spec()
� Result = ok | ferror,Errorg
� Error = term()

This function takes a list of child specification as argument and returns ok if all of them
are syntactically correct, or ferror,Errorg otherwise.

CALLBACK FUNCTIONS

The following functions should be exported from a supervisor callback module.

248 STDLIB

STDLIB Reference Manual supervisor

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Result = fok,ffRestartStrategy,MaxR,MaxTg,[ChildSpec]gg | ignore
� RestartStrategy = one for all | one for one | rest for one | simple one for one
� MaxR = MaxT = int()>=0
� ChildSpec = child spec()

Whenever a supervisor is started using supervisor:start link/2,3, this function is
called by the new process to find out about restart strategy, maximum restart frequency
and child specifications.

Args is the Args argument provided to the start function.

RestartStrategy is the restart strategy and MaxR and MaxT defines the maximum
restart frequency of the supervisor. [ChildSpec] is a list of valid child specifications
defining which child processes the supervisor should start and monitor. See the
discussion about Supervision Principles above.

Note that when the restart strategy is simple one for one, the list of child
specifications must be a list with one child specification only. (The Id is ignored). No
child process is then started during the initialization phase, but all children are assumed
to be started dynamically using supervisor:start child/2.

The function may also return ignore.

SEE ALSO

gen event(3), gen fsm(3), gen server(3), sys(3)

249STDLIB

supervisor bridge STDLIB Reference Manual

supervisor bridge
Erlang Module

A behaviour module for implementing a supervisor bridge, a process which connects a
subsystem not designed according to the OTP design principles to a supervision tree.
The supervisor bridge sits between a supervisor and the subsystem. It behaves like a real
supervisor to its own supervisor, but has a different interface than a real supervisor to
the subsystem. Refer to OTP Design Principles for more information.

A supervisor bridge assumes the functions for starting and stopping the subsystem to be
located in a callback module exporting a pre-defined set of functions.

The sys module can be used for debugging a supervisor bridge.

Unless otherwise stated, all functions in this module will fail if the specified
supervisor bridge does not exist or if bad arguments are given.

Exports

start link(Module, Args) -> Result

start link(SupBridgeName, Module, Args) -> Result

Types:

� SupBridgeName = flocal,Nameg | fglobal,Nameg
� Name = atom()
� Module = atom()
� Args = term()
� Result = fok,Pidg | ignore | ferror,Errorg
� Pid = pid()
� Error = falready started,Pidg | term()

Creates a supervisor bridge process, linked to the calling process, which calls
Module:init/1 to start the subsystem. To ensure a synchronized start-up procedure,
this function does not return until Module:init/1 has returned.

If SupBridgeName=flocal,Nameg the supervisor bridge is registered locally as Name
using register/2. If SupBridgeName=fglobal,Nameg the supervisor bridge is
registered globally as Name using global:register name/2. If no name is provided, the
supervisor bridge is not registered. If there already exists a process with the specified
SupBridgeName the function returns ferror,falready started,Pidgg, where Pid is
the pid of that process.

Module is the name of the callback module.

Args is an arbitrary term which is passed as the argument to Module:init/1.

If the supervisor bridge and the subsystem are successfully started the function returns
fok,Pidg, where Pid is is the pid of the supervisor bridge.

250 STDLIB

STDLIB Reference Manual supervisor bridge

If Module:init/1 returns ignore, this function returns ignore as well and the
supervisor bridge terminates with reason normal. If Module:init/1 fails or returns an
error tuple or an incorrect value, this function returns ferror,Termg where Term is a
term with information about the error, and the supervisor bridge terminates with
reason Term.

CALLBACK FUNCTIONS

The following functions should be exported from a supervisor bridge callback
module.

Exports

Module:init(Args) -> Result

Types:

� Args = term()
� Result = fok,Pid,Stateg | ignore | ferror,Errorg
� Pid = pid()
� State = term()
� Error = term()

Whenever a supervisor bridge is started using supervisor bridge:start link/2,3,
this function is called by the new process to start the subsystem and initialize.

Args is the Args argument provided to the start function.

The function should return fok,Pid,Stateg where Pid is the pid of the main process
in the subsystem and State is any term.

If later Pid terminates with a reason Reason, the supervisor bridge will terminate with
reason Reason as well. If later the supervisor bridge is stopped by its supervisor with
reason Reason, it will call Module:terminate(Reason,State) to terminate.

If something goes wrong during the initialization the function should return
ferror,Errorg where Error is any term, or ignore.

Module:terminate(Reason, State)

Types:

� Reason = shutdown | term()
� State = term()

This function is called by the supervisor bridge when it is about to terminate. It should
be the opposite of Module:init/1 and stop the subsystem and do any necessary
cleaning up. The return value is ignored.

Reason is shutdown if the supervisor bridge is terminated by its supervisor. If the
supervisor bridge terminates because a a linked process (apart from the main process of
the subsystem) has terminated with reason Term, Reason will be Term.

State is taken from the return value of Module:init/1.

251STDLIB

supervisor bridge STDLIB Reference Manual

SEE ALSO

supervisor(3), sys(3)

252 STDLIB

STDLIB Reference Manual sys

sys
Erlang Module

This module contains functions for sending system messages used by programs, and
messaged used for debugging purposes.

Functions used for implementation of processes should also understand system messages
such as debugging messages and code change. These functions must be used to
implement the use of system messages for a process; either directly, or through standard
behaviours, such as gen server.

The following types are used in the functions defined below:

� Name = pid() | atom() | fglobal, atom()g

� Timeout = int() >= 0 | infinity

� system event() = fin, Msgg | fin, Msg, Fromg | fout, Msg, Tog |
term()

The default timeout is 5000 ms, unless otherwise specified. The timeout defines the
time period to wait for the process to respond to a request. If the process does not
respond, the function evaluates exit(ftimeout, fM, F, Agg).

The functions make reference to a debug structure. The debug structure is a list of
dbg opt(). dbg opt() is an internal data type used by the handle system msg/6
function. No debugging is performed if it is an empty list.

System Messages

Processes which are not implemented as one of the standard behaviours must still
understand system messages. There are three different messages which must be
understood:

� Plain system messages. These are received as fsystem, From, Msgg. The content
and meaning of this message are not interpreted by the receiving process module.
When a system message has been received, the function
sys:handle system msg/6 is called in order to handle the request.

� Shutdown messages. If the process traps exits, it must be able to handle an
shut-down request from its parent, the supervisor. The message f’EXIT’,
Parent, Reasong from the parent is an order to terminate. The process must
terminate when this message is received, normally with the same Reason as
Parent.

253STDLIB

sys STDLIB Reference Manual

� There is one more message which the process must understand if the modules
used to implement the process change dynamically during runtime. An example of
such a process is the gen event processes. This message is fget modules, Fromg.
The reply to this message is From ! fmodules, Modulesg, where Modules is a
list of the currently active modules in the process.
This message is used by the release handler to find which processes execute a
certain module. The process may at a later time be suspended and ordered to
perform a code change for one of its modules.

System Events

When debugging a process with the functions of this module, the process generates
system events which are then treated in the debug function. For example, trace formats
the system events to the tty.

There are three predefined system events which are used when a process receives or
sends a message. The process can also define its own system events. It is always up to
the process itself to format these events.

Exports

log(Name,Flag)

log(Name,Flag,Timeout) -> ok | fok, [system event()]g

Types:

� Flag = true | ftrue, Ng | false | get | print
� N = integer() > 0

Turns the logging of system events On or Off. If On, a maximum of N events are kept in
the debug structure (the default is 10). If Flag is get, a list of all logged events is
returned. If Flag is print, the logged events are printed to standard io. The events
are formatted with a function that is defined by the process that generated the event
(with a call to sys:handle debug/4).

log to file(Name,Flag)

log to file(Name,Flag,Timeout) -> ok | ferror, open fileg

Types:

� Flag = FileName | false
� FileName = string()

Enables or disables the logging of all system events in textual format to the file. The
events are formatted with a function that is defined by the process that generated the
event (with a call to sys:handle debug/4).

statistics(Name,Flag)

statistics(Name,Flag,Timeout) -> ok | fok, Statisticsg

Types:

� Flag = true | false | get

254 STDLIB

STDLIB Reference Manual sys

� Statistics = [fstart time, fDate1, Time1gg, fcurrent time, fDate, Time2gg,
freductions, integer()g, fmessages in, integer()g, fmessages out, integer()g]

� Date1 = Date2 = fYear, Month, Dayg
� Time1 = Time2 = fHour, Min, Secg

Enables or disables the collection of statistics. If Flag is get, the statistical collection is
returned.

trace(Name,Flag)

trace(Name,Flag,Timeout) -> void()

Types:

� Flag = boolean()

Prints all system events on standard io. The events are formatted with a function that
is defined by the process that generated the event (with a call to sys:handle debug/4).

no debug(Name)

no debug(Name,Timeout) -> void()

Turns off all debugging for the process. This includes functions that have been installed
explicitly with the install function, for example triggers.

suspend(Name)

suspend(Name,Timeout) -> void()

Suspends the process. When the process is suspended, it will only respond to other
system messages, but not other messages.

resume(Name)

resume(Name,Timeout) -> void()

Resumes a suspended process.

change code(Name, Module, OldVsn, Extra)

change code(Name, Module, OldVsn, Extra, Timeout) -> ok | ferror, Reasong

Types:

� OldVsn = undefined | term()
� Module = atom()
� Extra = term()

Tells the process to change code. The process must be suspended to handle this
message. The Extra argument is reserved for each process to use as its own. The
function Mod:system code change/4 is called. OldVsn is the old version of the Module.

get status(Name)

get status(Name,Timeout) -> fstatus, Pid, fmodule, Modg, [PDict, SysState, Parent,
Dbg, Misc]g

Types:

� PDict = [fKey, Valueg]
� SysState = running | suspended
� Parent = pid()

255STDLIB

sys STDLIB Reference Manual

� Dbg = [dbg opt()]
� Misc = term()

Gets the status of the process.

install(Name,fFunc,FuncStateg)

install(Name,fFunc,FuncStateg,Timeout)

Types:

� Func = dbg fun()
� dbg fun() = fun(FuncState, Event, ProcState) -> done | NewFuncState
� FuncState = term()
� Event = system event()
� ProcState = term()
� NewFuncState = term()

This function makes it possible to install other debug functions than the ones defined
above. An example of such a function is a trigger, a function that waits for some special
event and performs some action when the event is generated. This could, for example,
be turning on low level tracing.

Func is called whenever a system event is generated. This function should return done,
or a new func state. In the first case, the function is removed. It is removed if the
function fails.

remove(Name,Func)

remove(Name,Func,Timeout) -> void()

Types:

� Func = dbg fun()

Removes a previously installed debug function from the process. Func must be the same
as previously installed.

Process Implementation Functions

The following functions are used when implementing a special process. This is an
ordinary process which does not use a standard behaviour, but a process which
understands the standard system messages.

256 STDLIB

STDLIB Reference Manual sys

Exports

debug options(Options) -> [dbg opt()]

Types:

� Options = [Opt]
� Opt = trace | log | statistics | flog to file, FileNameg | finstall, fFunc, FuncStategg
� Func = dbg fun()
� FuncState = term()

This function can be used by a process that initiates a debug structure from a list of
options. The values of the Opt argument are the same as the corresponding functions.

get debug(Item,Debug,Default) -> term()

Types:

� Item = log | statistics
� Debug = [dbg opt()]
� Default = term()

This function gets the data associated with a debug option. Default is returned if the
Item is not found. Can be used by the process to retrieve debug data for printing before
it terminates.

handle debug([dbg opt()],FormFunc,Extra,Event) -> [dbg opt()]

Types:

� FormFunc = dbg fun()
� Extra = term()
� Event = system event()

This function is called by a process when it generates a system event. FormFunc is a
formatting function which is called as FormFunc(Device, Event, Extra) in order to
print the events, which is necessary if tracing is activated. Extra is any extra information
which the process needs in the format function, for example the name of the process.

handle system msg(Msg,From,Parent,Module,Debug,Misc)

Types:

� Msg = term()
� From = pid()
� Parent = pid()
� Module = atom()
� Debug = [dbg opt()]
� Misc = term()

257STDLIB

sys STDLIB Reference Manual

This function is used by a process module that wishes to take care of system messages.
The process receives a fsystem, From, Msgg message and passes the Msg and From to
this function.

This function never returns. It calls the function Module:system continue(Parent,
NDebug, Misc) where the process continues the execution, or
Module:system terminate(Reason, Parent, Debug, Misc) if the process should
terminate. The Module must export system continue/3, system terminate/4, and
system code change/4 (see below).

The Misc argument can be used to save internal data in a process, for example its state.
It is sent to Module:system continue/3 or Module:system terminate/4

print log(Debug) -> void()

Types:

� Debug = [dbg opt()]

Prints the logged system events in the debug structure using FormFunc as defined when
the event was generated by a call to handle debug/4.

Mod:system continue(Parent, Debug, Misc)

Types:

� Parent = pid()
� Debug = [dbg opt()]
� Misc = term()

This function is called from sys:handle system msg/6 when the process should
continue its execution (for example after it has been suspended). This function never
returns.

Mod:system terminate(Reason, Parent, Debug, Misc)

Types:

� Reason = term()
� Parent = pid()
� Debug = [dbg opt()]
� Misc = term()

This function is called from sys:handle system msg/6 when the process should
terminate. For example, this function is called when the process is suspended and its
parent orders shut-down. It gives the process a chance to do a clean-up. This function
never returns.

Mod:system code change(Misc, Module, OldVsn, Extra) -> fok, NMiscg

Types:

� Misc = term()
� OldVsn = undefined | term()
� Module = atom()
� Extra = term()
� NMisc = term()

258 STDLIB

STDLIB Reference Manual sys

Called from sys:handle system msg/6 when the process should perform a code
change. The code change is used when the internal data structure has changed. This
function converts the Misc argument to the new data structure. OldVsn is the vsn
attribute of the old version of the Module. If no such attribute was defined, the atom
undefined is sent.

259STDLIB

timer STDLIB Reference Manual

timer
Erlang Module

This module provides useful functions related to time. Unless otherwise stated, time is
always measured in milliseconds. All timer functions return immediately, regardless
of work carried out by another process.

Successful evaluations of the timer functions yield return values containing a timer
reference, denoted TRef below. By using cancel/1, the returned reference can be used
to cancel any requested action. A TRef is an Erlang term, the contents of which must
not be altered.

The timeouts are not exact, but should be at least as long as requested.

Exports

start() -> ok

Starts the timer server. Normally, the server does not need to be started explicitly. It is
started dynamically if it is needed. This is useful during development, but in a target
system the server should be started explicitly. Use configuration parameters for kernel
for this.

apply after(Time, Module, Function, Arguments) -> fok, Trefg | ferror, Reasong

Types:

� Time = integer() in Milliseconds
� Module = Function = atom()
� Arguments = [term()]

Evaluates apply(M, F, A) after Time amount of time has elapsed. Returns fok,
TRefg, or ferror, Reasong.

send after(Time, Pid, Message) -> fok, TRefg | ferror,Reasong

send after(Time, Message) -> fok, TRefg | ferror,Reasong

Types:

� Time = integer() in Milliseconds
� Pid = pid() | atom()
� Message = term()
� Result = fok, TRefg | ferror, Reasong

send after/3 Evaluates Pid ! Message after Time amount of time has elapsed. (Pid
can also be an atom of a registered name.) Returns fok, TRefg, or ferror,
Reasong.

260 STDLIB

STDLIB Reference Manual timer

send after/2 Same as send after(Time, self(), Message).

exit after(Time, Pid, Reason1) -> fok, TRefg | ferror,Reason2g

exit after(Time, Reason1) -> fok, TRefg | ferror,Reason2g

kill after(Time, Pid)-> fok, TRefg | ferror,Reason2g

kill after(Time) -> fok, TRefg | ferror,Reason2g

Types:

� Time = integer() in milliseconds
� Pid = pid() | atom()
� Reason1 = Reason2 = term()

exit after/3 Send an exit signal with reason Reason1 to Pid Pid. Returns fok,
TRefg, or ferror, Reason2g.

exit after/2 Same as exit after(Time, self(), Reason1).

kill after/2 Same as exit after(Time, Pid, kill).

kill after/1 Same as exit after(Time, self(), kill).

apply interval(Time, Module, Function, Arguments) -> fok, TRefg | ferror, Reasong

Types:

� Time = integer() in milliseconds
� Module = Function = atom()
� Arguments = [term()]

Evaluates apply(Module, Function, Arguments) repeatedly at intervals of Time.
Returns fok, TRefg, or ferror, Reasong.

send interval(Time, Pid, Message) -> fok, TRefg | ferror, Reasong

send interval(Time, Message) -> fok, TRefg | ferror, Reasong

Types:

� Time = integer() in milliseconds
� Pid = pid() | atom()
� Message = term()
� Reason = term()

send interval/3 Evaluates Pid ! Message repeatedly after Time amount of time has
elapsed. (Pid can also be an atom of a registered name.) Returns fok, TRefg or
ferror, Reasong.

send interval/2 Same as send interval(Time, self(), Message).

cancel(TRef) -> fok, cancelg | ferror, Reasong

Cancels a previously requested timeout. TRef is a unique timer reference returned by
the timer function in question. Returns fok, cancelg, or ferror, Reasong when TRef
is not a timer reference.

sleep(Time) -> ok

261STDLIB

timer STDLIB Reference Manual

Types:

� Time = integer() in milliseconds

Suspends the process calling this function for Time amount of milliseconds and then
returns ok. Naturally, this function does not return immediately.

tc(Module, Function, Arguments) -> fTime, Valueg

Types:

� Module = Function = atom()
� Arguments = [term()]
� Time = integer() in microseconds
� Value = term()

Evaluates apply(Module, Function, Arguments) and measures the elapsed real time.
Returns fTime, Valueg, where Time is the elapsed real time in microseconds, and Value
is what is returned from the apply.

seconds(Seconds) -> Milliseconds

Returns the number of milliseconds in Seconds.

minutes(Minutes) -> Milliseconds

Return the number of milliseconds in Minutes.

hours(Hours) -> Milliseconds

Returns the number of milliseconds in Hours.

hms(Hours, Minutes, Seconds) -> Milliseconds

Returns the number of milliseconds in Hours + Minutes + Seconds.

Examples

This example illustrates how to print out “Hello World!” in 5 seconds:

1> timer:apply_after(5000, io, format, ["~nHello World!~n", []]).
{ok,TRef}
Hello World!
2>

The following coding example illustrates a process which performs a certain action and
if this action is not completed within a certain limit, then the process is killed.

Pid = spawn(mod, fun, [foo, bar]),
%% If pid is not finished in 10 seconds, kill him
{ok, R} = timer:kill_after(timer:seconds(10), Pid),
...
%% We change our mind...
timer:cancel(R),
...

262 STDLIB

STDLIB Reference Manual timer

WARNING

A timer can always be removed by calling cancel/1.

An interval timer, i.e. a timer created by evaluating any of the functions
apply interval/4, send interval/3, and send interval/2, is linked to the process
towards which the timer performs its task.

A one-shot timer, i.e. a timer created by evaluating any of the functions apply after/4,
send after/3, send after/2, exit after/3, exit after/2, kill after/2, and
kill after/1 is not linked to any process. Hence, such a timer is removed only when it
reaches its timeout, or if it is explicitly removed by a call to cancel/1.

263STDLIB

unix STDLIB Reference Manual

unix
Erlang Module

This module makes it possible to make calls to the UNIX shell. The shell used is
/bin/sh, so the environment might be different to the one you commonly use. C shell
expansions cannot be used. The module is extremely easy to use and there is only one
function.

Note that most UNIX commands produce a trailing new line.

Exports

cmd(String)

Makes the call String to sh and returns the answer in a list of characters.

Example: (bizarre version of ls)

1> unix:cmd("for i in *; do echo $i; done").

264 STDLIB

STDLIB Reference Manual win32reg

win32reg
Erlang Module

win32reg provides read and write access to the registry on Windows. It is essentially a
port driver wrapped around the Win32 API calls for accessing the registry.

The registry is a hierarchical database, used to store various system and software
information in Windows. It is available in Windows 95 and Windows NT. It contains
installation data, and is updated by installers and system programs. The Erlang installer
updates the registry by adding data that Erlang needs.

The registry contains keys and values. Keys are like the directories in a file system, they
form a hierarchy. Values are like files, they have a name and a value, and also a type.

Paths to keys are left to right, with sub-keys to the right and backslash between keys.
(Remember that backslashes must be doubled in Erlang strings.) Case is preserved but
not significant. Example:
"\\hkey local machine\\software\\Ericsson\\Erlang\\5.0" is the key for the
installation data for the latest Erlang release.

There are six entry points in the Windows registry, top level keys. They can be
abbreviated in the win32reg module as:

Abbrev. Registry key
======= ============
hkcr HKEY CLASSES ROOT
current user HKEY CURRENT USER
hkcu HKEY CURRENT USER
local machine HKEY LOCAL MACHINE
hklm HKEY LOCAL MACHINE
users HKEY USERS
hku HKEY USERS
current config HKEY CURRENT CONFIG
hkcc HKEY CURRENT CONFIG
dyn data HKEY DYN DATA
hkdd HKEY DYN DATA

The key above could be written as "\\hklm\\software\\ericsson\\erlang\\5.0".

The win32reg module uses a current key. It works much like the current directory.
From the current key, values can be fetched, sub-keys can be listed, and so on.

Under a key, any number of named values can be stored. They have name, and types,
and data.

Currently, the win32reg module supports storing only the following types:
REG DWORD, which is an integer, REG SZ which is a string and REG BINARY which
is a binary. Other types can be read, and will be returned as binaries.

There is also a “default” value, which has the empty string as name. It is read and
written with the atom default instead of the name.

265STDLIB

win32reg STDLIB Reference Manual

Some registry values are stored as strings with references to environment variables, e.g.
"%SystemRoot%Windows". SystemRoot is an environment variable, and should be
replaced with its value. A function expand/1 is provided, so that environment variables
surrounded in % can be expanded to their values.

For additional information on the Windows registry consult the Win32 Programmer’s
Reference.

Exports

change key(RegHandle, Key) -> ReturnValue

Types:

� RegHandle = term()
� Key = string()

Changes the current key to another key. Works like cd. The key can be specified as a
relative path or as an absolute path, starting with \.

change key create(RegHandle, Key) -> ReturnValue

Types:

� RegHandle = term()
� Key = string()

Creates a key, or just changes to it, if it is already there. Works like a combination of
mkdir and cd. Calls the Win32 API function RegCreateKeyEx().

The registry must have been opened in write-mode.

close(RegHandle)-> ReturnValue

Types:

� RegHandle = term()

Closes the registry. After that, the RegHandle cannot be used.

current key(RegHandle) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = fok, string()g

Returns the path to the current key. This is the equivalent of pwd.

Note that the current key is stored in the driver, and might be invalid (e.g. if the key has
been removed).

delete key(RegHandle) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = ok | ferror, ErrorIdg

266 STDLIB

STDLIB Reference Manual win32reg

Deletes the current key, if it is valid. Calls the Win32 API function RegDeleteKey().
Note that this call does not change the current key, (unlike change key create/2.)
This means that after the call, the current key is invalid.

delete value(RegHandle, Name) -> ReturnValue

Types:

� RegHandle = term()
� ReturnValue = ok | ferror, ErrorIdg

Deletes a named value on the current key. The atom default is used for the the default
value.

The registry must have been opened in write-mode.

expand(String) -> ExpandedString

Types:

� String = string()
� ExpandedString = string()

Expands a string containing environment variables between percent characters.
Anything between two % is taken for a environment variable, and is replaced by the
value. Two consecutive % is replaced by one %.

A variable name that is not in the environment, will result in an error.

format error(ErrorId) -> ErrorString

Types:

� ErrorId = atom()
� ErrorString = string()

Convert an POSIX errorcode to a string (by calling erl posix msg:message).

open(OpenModeList)-> ReturnValue

Types:

� OpenModeList = [OpenMode]
� OpenMode = read | write

Opens the registry for reading or writing. The current key will be the root
(HKEY CLASSES ROOT). The read flag in the mode list can be omitted.

Use change key/2 with an absolute path after open.

set value(RegHandle, Name, Value) -> ReturnValue

Types:

� Name = string() | default
� Value = string() | integer() | binary()

267STDLIB

win32reg STDLIB Reference Manual

Sets the named (or default) value to value. Calls the Win32 API function
RegSetValueEx(). The value can be of three types, and the corresponding registry type
will be used. Currently the types supported are: REG DWORD for integers, REG SZ for
strings and REG BINARY for binaries. Other types cannot currently be added or changed.

The registry must have been opened in write-mode.

sub keys(RegHandle) -> ReturnValue

Types:

� ReturnValue = fok, SubKeysg | ferror, ErrorIdg
� SubKeys = [SubKey]
� SubKey = string()

Returns a list of subkeys to the current key. Calls the Win32 API function
EnumRegKeysEx().

Avoid calling this on the root keys, it can be slow.

value(RegHandle, Name) -> ReturnValue

Types:

� Name = string() | default
� ReturnValue = fok, Valueg
� Value = string() | integer() | binary()

Retrieves the named value (or default) on the current key. Registry values of type
REG SZ, are returned as strings. Type REG DWORD values are returned as integers. All
other types are returned as binaries.

values(RegHandle) -> ReturnValue

Types:

� ReturnValue = fok, ValuePairsg
� ValuePairs = [ValuePair]
� ValuePair = fName, Valueg
� Name = string | default
� Value = string() | integer() | binary()

Retrieves a list of all values on the current key. The values have types corresponding to
the registry types, see value. Calls the Win32 API function EnumRegValuesEx().

SEE ALSO

Win32 Programmer’s Reference (from Microsoft)

erl posix msg

The Windows 95 Registry (book from O’Reilly)

268 STDLIB

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

a_function/2
sofs , 219

abcast/2
gen server , 155

abcast/3
gen server , 155

absname/1
filename , 123

absname/2
filename , 123

abstract/1
erl parse , 97

acos/1
math , 183

acosh/1
math , 183

add/2
gb sets , 129

add_binding/3
erl eval , 89

add_edge/3
digraph , 75

add_edge/4
digraph , 75

add_edge/5
digraph , 75

add_element/2
sets , 203

add_handler/3
gen event , 135

add_sup_handler/3
gen event , 136

add_vertex/1

digraph , 76

add_vertex/2
digraph , 76

add_vertex/3
digraph , 76

all/0
dets , 58
ets , 105

all/2
lists , 179

any/2
lists , 179

append/1
lists , 171

append/2
lists , 171

append/3
dict , 71

append_list/3
dict , 71

apply_after/4
timer , 260

apply_interval/4
timer , 261

arith_op/2
erl internal , 92

asin/1
math , 183

asinh/1
math , 183

atan/1
math , 183

atan2/2

269STDLIB

math , 183

atanh/1
math , 183

attach/1
pool , 188

attribute/1
erl pp , 99

attribute/2
erl pp , 99

balance/1
gb sets , 129
gb trees , 132

basename/1
filename , 124

basename/2
filename , 124

bchunk/2
dets , 58

beam lib
chunks/2, 44
cmp/2, 44
cmp_dirs/2, 45
diff_dirs/2, 45
format_error/1, 46
info/1, 44
strip/1, 45
strip_files/1, 45
strip_release/1, 46
version/1, 44

bif/2
erl internal , 92

binding/2
erl eval , 89

bindings/1
erl eval , 89

bool_op/2
erl internal , 92

bt/1
c , 47

c
bt/1, 47
c/1, 47
c/2, 47
cd/1, 47

flush/0, 48
help/0, 48
i/0, 48
i/3, 48
l/1, 48
lc/1, 48
ls/0, 48
ls/1, 48
m/0, 48
m/1, 49
memory/0, 49
memory/1, 49
nc/1, 50
nc/2, 50
ni/0, 50
nl/1, 50
nregs/0, 50
pid/3, 50
pwd/0, 51
q/0, 51
regs/0, 51
xm/1, 51
zi/0, 51

c/1
c , 47

c/2
c , 47

calendar
date_to_gregorian_days/1, 52
date_to_gregorian_days/3, 52
datetime_to_gregorian_seconds/1, 52
day_of_the_week/1, 53
day_of_the_week/3, 53
gregorian_days_to_date/1, 53
gregorian_seconds_to_datetime/1, 53
is_leap_year/1, 53
last_day_of_the_month/2, 53
local_time/0, 54
local_time_to_universal_time/2, 54
now_to_datetime/1, 54
now_to_local_time/1, 54
now_to_universal_time/1, 54
seconds_to_daystime/1, 54
seconds_to_time/1, 55
time_difference/2, 55
time_to_secnds/1, 55
universal_time/0, 55
universal_time_to_local_time/2, 55
valid_date/1, 56
valid_date/3, 56

call/2

270 STDLIB

gen server , 153

call/3
gen event , 137
gen server , 153

call/4
gen event , 137

cancel/1
timer , 261

canonical_relation/1
sofs , 220

cast/2
gen server , 155

cd/1
c , 47

centre/2
string , 241

centre/3
string , 241

change_code/4
sys , 255

change_code/5
sys , 255

change_key/2
win32reg , 266

change_key_create/2
win32reg , 266

char_list/1
io lib , 168

chars/2
string , 239

chars/3
string , 239

check/1
file sorter , 122

check/2
file sorter , 122

check_childspecs/1
supervisor , 248

chr/2
string , 238

chunks/2
beam lib , 44

close/1

dets , 59
epp , 86
win32reg , 266

cmd/1
unix , 264

cmp/2
beam lib , 44

cmp_dirs/2
beam lib , 45

comp_op/2
erl internal , 93

components/1
digraph utils , 83

composite/2
sofs , 220

concat/1
lists , 172

concat/2
string , 238

condensation/1
digraph utils , 83

constant_function/2
sofs , 220

converse/1
sofs , 220

copies/2
string , 240

cos/1
math , 183

cosh/1
math , 183

create/1
pg , 187

create/2
pg , 187

cspan/2
string , 239

current_key/1
win32reg , 266

cyclic_strong_components/1
digraph utils , 83

date_to_gregorian_days/1
calendar , 52

271STDLIB

date_to_gregorian_days/3
calendar , 52

datetime_to_gregorian_seconds/1
calendar , 52

day_of_the_week/1
calendar , 53

day_of_the_week/3
calendar , 53

debug_options/1
sys , 257

deep_char_list/1
io lib , 169

del_binding/2
erl eval , 89

del_edge/2
digraph , 76

del_edges/2
digraph , 76

del_element/2
sets , 203

del_path/3
digraph , 76

del_vertex/2
digraph , 77

del_vertices/2
digraph , 77

delete/1
digraph , 77
ets , 105

delete/2
dets , 59
ets , 105
gb sets , 129
gb trees , 132
lists , 172

delete_all_objects/1
dets , 59
ets , 105

delete_any/2
gb trees , 132

delete_child/2
supervisor , 247

delete_handler/3
gen event , 137

delete_key/1
win32reg , 266

delete_object/2
dets , 59
ets , 105

delete_value/2
win32reg , 267

dets
all/0, 58
bchunk/2, 58
close/1, 59
delete/2, 59
delete_all_objects/1, 59
delete_object/2, 59
first/1, 59
foldl/3, 60
foldr/3, 60
from_ets/2, 60
info/1, 60
info/2, 61
init_table/3, 61
insert/2, 62
is_dets_file/1, 62
lookup/2, 63
match/1, 63
match/2, 63
match/3, 63
match_delete/2, 64
match_object/1, 64
match_object/2, 64
match_object/3, 65
member/2, 65
next/2, 65
open_file/1, 66
open_file/2, 66
pid2name/1, 67
safe_fixtable/2, 67
select/1, 68
select/2, 68
select/3, 68
select_delete/2, 69
slot/2, 69
sync/1, 69
to_ets/2, 69
traverse/2, 69
update_counter/3, 70

dict
append/3, 71
append_list/3, 71
erase/2, 71
fetch/2, 71

272 STDLIB

fetch_keys/1, 72
filter/2, 72
find/2, 72
fold/3, 72
from_list/1, 72
is_key/2, 72
map/2, 72
merge/3, 73
new/0, 73
store/3, 73
to_list/1, 73
update/3, 73
update/4, 74
update_counter/3, 74

diff_dirs/2
beam lib , 45

difference/2
gb sets , 129
sofs , 221

digraph
add_edge/3, 75
add_edge/4, 75
add_edge/5, 75
add_vertex/1, 76
add_vertex/2, 76
add_vertex/3, 76
del_edge/2, 76
del_edges/2, 76
del_path/3, 76
del_vertex/2, 77
del_vertices/2, 77
delete/1, 77
edge/2, 77
edges/1, 77
edges/2, 77
get_cycle/2, 78
get_path/3, 78
get_short_cycle/2, 78
get_short_path/3, 78
in_degree/2, 79
in_edges/2, 79
in_neighbours/2, 79
info/1, 79
new/0, 80
new/1, 80
no_edges/1, 80
no_vertices/1, 80
out_degree/2, 80
out_edges/2, 80
out_neighbours/2, 80
vertex/2, 81

vertices/1, 81

digraph_to_family/2
sofs , 221

digraph utils
components/1, 83
condensation/1, 83
cyclic_strong_components/1, 83
is_acyclic/1, 83
loop_vertices/1, 83
postorder/1, 84
preorder/1, 84
reachable/2, 84
reachable_neighbours/2, 84
reaching/2, 84
reaching_neighbours/2, 84
strong_components/1, 85
subgraph/3, 85
topsort/1, 85

dirname/1
filename , 124

domain/1
sofs , 221

drestriction/2
sofs , 221

drestriction/3
sofs , 222

dropwhile/2
lists , 179

duplicate/2
lists , 172

edge/2
digraph , 77

edges/1
digraph , 77

edges/2
digraph , 77

empty/0
gb sets , 128
gb trees , 131

empty_set/0
sofs , 222

enter/3
gb trees , 132

epp
close/1, 86

273STDLIB

open/2, 86
open/3, 86
parse_erl_form/1, 86
parse_file/3, 86

equal/2
string , 238

erase/2
dict , 71

erf/1
math , 183

erfc/1
math , 184

erl eval
add_binding/3, 89
binding/2, 89
bindings/1, 89
del_binding/2, 89
expr/2, 88
expr/3, 88
expr_list/2, 88
expr_list/3, 88
exprs/2, 88
exprs/3, 88
new_bindings/0, 89

erl id trans
parse_transform/2, 91

erl internal
arith_op/2, 92
bif/2, 92
bool_op/2, 92
comp_op/2, 93
guard_bif/2, 92
list_op/2, 93
op_type/2, 93
send_op/2, 93
type_test/2, 92

erl lint
format_error/1, 95
is_guard_test/1, 95
module/1, 94
module/2, 94
module/3, 94

erl parse
abstract/1, 97
format_error/1, 97
normalise/1, 97
parse_exprs/1, 96
parse_form/1, 96
parse_term/1, 96

tokens/1, 97
tokens/2, 97

erl pp
attribute/1, 99
attribute/2, 99
expr/1, 100
expr/2, 100
expr/3, 100
expr/4, 100
exprs/1, 100
exprs/2, 100
exprs/3, 100
form/1, 99
form/2, 99
function/1, 99
function/2, 99
guard/1, 99
guard/2, 99

erl scan
format_error/1, 103
reserved_word/1, 103
string/1, 102
string/2, 102
tokens/3, 102

error_message/2
lib , 170

esend/2
pg , 187

ets
all/0, 105
delete/1, 105
delete/2, 105
delete_all_objects/1, 105
delete_object/2, 105
file2tab/1, 105
first/1, 105
fixtable/2, 106
foldl/3, 106
foldr/3, 106
from_dets/2, 106
i/0, 107
i/1, 107
info/1, 107
info/2, 107
init_table/2, 108
insert/2, 108
last/1, 108
lookup/2, 109
lookup_element/3, 109
match/1, 110

274 STDLIB

match/2, 109
match/3, 110
match_delete/2, 110
match_object/1, 111
match_object/2, 110
match_object/3, 111
member/2, 111
new/2, 111
next/2, 112
prev/2, 113
rename/2, 113
safe_fixtable/2, 113
select/1, 115
select/2, 114
select/3, 115
slot/2, 116
tab2file/2, 116
tab2list/1, 116
test_ms/2, 116
to_dets/2, 117
update_counter/3, 117
update_counter/4, 117

exit_after/2
timer , 261

exit_after/3
timer , 261

exp/1
math , 183

expand/1
win32reg , 267

expr/1
erl pp , 100

expr/2
erl eval , 88
erl pp , 100

expr/3
erl eval , 88
erl pp , 100

expr/4
erl pp , 100

expr_list/2
erl eval , 88

expr_list/3
erl eval , 88

exprs/1
erl pp , 100

exprs/2

erl eval , 88
erl pp , 100

exprs/3
erl eval , 88
erl pp , 100

extension/1
filename , 124

family/2
sofs , 222

family_difference/2
sofs , 222

family_domain/1
sofs , 222

family_field/1
sofs , 223

family_intersection/1
sofs , 223

family_intersection/2
sofs , 223

family_projection/2
sofs , 223

family_range/1
sofs , 224

family_specification/2
sofs , 224

family_to_digraph/2
sofs , 224

family_to_relation/1
sofs , 225

family_union/1
sofs , 225

family_union/2
sofs , 225

fetch/2
dict , 71

fetch_keys/1
dict , 72

field/1
sofs , 226

file2tab/1
ets , 105

file sorter
check/1, 122

275STDLIB

check/2, 122
keycheck/2, 122
keycheck/3, 122
keymerge/3, 122
keymerge/4, 122
keysort/2, 121
keysort/3, 121
keysort/4, 121
merge/2, 121
merge/3, 121
sort/1, 121
sort/2, 121
sort/3, 121

filename
absname/1, 123
absname/2, 123
basename/1, 124
basename/2, 124
dirname/1, 124
extension/1, 124
find_src/1, 126
find_src/2, 126
join/1, 125
join/2, 125
nativename/1, 125
pathtype/1, 125
rootname/1, 126
rootname/2, 126
split/1, 126

filter/2
dict , 72
gb sets , 130
lists , 179
sets , 204

find/2
dict , 72

find_src/1
filename , 126

find_src/2
filename , 126

first/1
dets , 59
ets , 105

first_match/2
regexp , 197

fixtable/2
ets , 106

flatlength/1
lists , 172

flatmap/2
lists , 179

flatten/1
lists , 172

flatten/2
lists , 172

flush/0
c , 48

flush_receive/0
lib , 170

fold/3
dict , 72
gb sets , 130
sets , 204

foldl/3
dets , 60
ets , 106
lists , 179

foldr/3
dets , 60
ets , 106
lists , 180

foreach/2
lists , 180

form/1
erl pp , 99

form/2
erl pp , 99

format/1
io , 161
proc lib , 192

format/2
io lib , 167

format/3
io , 161

format_error/1
beam lib , 46
erl lint , 95
erl parse , 97
erl scan , 103
regexp , 199
win32reg , 267

fread/2
io lib , 167

fread/3

276 STDLIB

io , 164
io lib , 168

from_dets/2
ets , 106

from_ets/2
dets , 60

from_external/2
sofs , 226

from_list/1
dict , 72
gb sets , 130
sets , 202

from_orddict/1
gb trees , 132

from_ordset/1
gb sets , 130

from_sets/1
sofs , 226

from_term/2
sofs , 226

function/1
erl pp , 99

function/2
erl pp , 99

fwrite/1
io , 161

fwrite/2
io lib , 167

fwrite/3
io , 161

gb sets
add/2, 129
balance/1, 129
delete/2, 129
difference/2, 129
empty/0, 128
filter/2, 130
fold/3, 130
from_list/1, 130
from_ordset/1, 130
insert/2, 129
intersection/1, 129
intersection/2, 129
is_empty/1, 128
is_member/2, 128

is_set/1, 130
is_subset/2, 129
iterator/1, 130
next/1, 130
singleton/1, 128
size/1, 128
take_smallest/1, 130
to_list/1, 130
union/1, 129
union/2, 129

gb trees
balance/1, 132
delete/2, 132
delete_any/2, 132
empty/0, 131
enter/3, 132
from_orddict/1, 132
get/2, 131
insert/3, 132
is_defined/2, 132
is_empty/1, 131
iterator/1, 133
keys/1, 132
lookup/2, 131
next/1, 133
size/1, 131
take_smallest/1, 133
to_list/1, 132
update/3, 132
values/1, 132

gen event
add_handler/3, 135
add_sup_handler/3, 136
call/3, 137
call/4, 137
delete_handler/3, 137
Module:code_change/3, 142
Module:handle_call/2, 141
Module:handle_event/2, 140
Module:handle_info/2, 141
Module:init/1, 140
Module:terminate/2, 141
notify/2, 136
start/0, 135
start/1, 135
start_link/0, 135
start_link/1, 135
stop/1, 139
swap_handler/5, 138
swap_sup_handler/5, 139
sync_notify/2, 136
which_handlers/1, 139

277STDLIB

gen fsm
Module:code_change/4, 150
Module:handle_event/3, 148
Module:handle_info/3, 149
Module:handle_sync_event/4, 149
Module:init/1, 147
Module:StateName/2, 147
Module:StateName/3, 148
Module:terminate/3, 150
reply/2, 146
send_all_state_event/2, 145
send_event/2, 145
start/3, 144
start/4, 144
start_link/3, 144
start_link/4, 144
sync_send_all_state_event/2, 146
sync_send_all_state_event/3, 146
sync_send_event/2, 145
sync_send_event/3, 145

gen server
abcast/2, 155
abcast/3, 155
call/2, 153
call/3, 153
cast/2, 155
Module:code_change/3, 158
Module:handle_call/3, 156
Module:handle_cast/2, 157
Module:handle_info/2, 157
Module:init/1, 156
Module:terminate/2, 158
multi_call/2, 154
multi_call/3, 154
multi_call/4, 154
reply/2, 156
start/3, 152
start/4, 152
start_link/3, 152
start_link/4, 152

get/2
gb trees , 131

get_chars/3
io , 160

get_cycle/2
digraph , 78

get_debug/3
sys , 257

get_line/2
io , 160

get_node/0
pool , 189

get_nodes/0
pool , 189

get_path/3
digraph , 78

get_short_cycle/2
digraph , 78

get_short_path/3
digraph , 78

get_status/1
sys , 255

get_status/2
sys , 255

gregorian_days_to_date/1
calendar , 53

gregorian_seconds_to_datetime/1
calendar , 53

gsub/3
regexp , 198

guard/1
erl pp , 99

guard/2
erl pp , 99

guard_bif/2
erl internal , 92

handle_debug/1
sys , 257

handle_system_msg/6
sys , 257

help/0
c , 48

history/1
shell , 211

hms/3
timer , 262

hours/1
timer , 262

i/0
c , 48
ets , 107

i/1

278 STDLIB

ets , 107

i/3
c , 48

image/2
sofs , 227

in/2
queue , 194

in_degree/2
digraph , 79

in_edges/2
digraph , 79

in_neighbours/2
digraph , 79

indentation/2
io lib , 168

info/1
beam lib , 44
dets , 60
digraph , 79
ets , 107

info/2
dets , 61
ets , 107

init/3
log mf h , 182

init/4
log mf h , 182

init_ack/1
proc lib , 191

init_ack/2
proc lib , 191

init_table/2
ets , 108

init_table/3
dets , 61

initial_call/1
proc lib , 192

insert/2
dets , 62
ets , 108
gb sets , 129

insert/3
gb trees , 132

install/3

sys , 256

install/4
sys , 256

intersection/1
gb sets , 129
sets , 203
sofs , 227

intersection/2
gb sets , 129
sets , 203
sofs , 227

intersection_of_family/1
sofs , 228

inverse/1
sofs , 228

inverse_image/2
sofs , 228

io
format/1, 161
format/3, 161
fread/3, 164
fwrite/1, 161
fwrite/3, 161
get_chars/3, 160
get_line/2, 160
nl/1, 160
parse_erl_exprs/1, 165
parse_erl_exprs/3, 165
parse_erl_form/1, 166
parse_erl_form/3, 166
put_chars/2, 160
read/2, 160
scan_erl_exprs/1, 165
scan_erl_exprs/3, 165
scan_erl_form/1, 165
scan_erl_form/3, 165
write/2, 160

io lib
char_list/1, 168
deep_char_list/1, 169
format/2, 167
fread/2, 167
fread/3, 168
fwrite/2, 167
indentation/2, 168
nl/0, 167
print/1, 167
print/4, 167
printable_list/1, 169

279STDLIB

write/1, 167
write/2, 167
write_atom/1, 168
write_char/1, 168
write_string/1, 168

is_a_function/1
sofs , 228

is_acyclic/1
digraph utils , 83

is_defined/2
gb trees , 132

is_dets_file/1
dets , 62

is_disjoint/2
sofs , 228

is_element/2
sets , 202

is_empty/1
gb sets , 128
gb trees , 131

is_empty_set/1
sofs , 229

is_equal/2
sofs , 229

is_guard_test/1
erl lint , 95

is_key/2
dict , 72

is_leap_year/1
calendar , 53

is_member/2
gb sets , 128

is_set/1
gb sets , 130
sets , 202
sofs , 229

is_sofs_set/1
sofs , 229

is_subset/2
gb sets , 129
sets , 204
sofs , 229

is_type/1
sofs , 229

iterator/1
gb sets , 130
gb trees , 133

join/1
filename , 125

join/2
filename , 125
pg , 187

join/4
sofs , 229

keycheck/2
file sorter , 122

keycheck/3
file sorter , 122

keydelete/3
lists , 173

keymember/3
lists , 173

keymerge/3
file sorter , 122
lists , 173

keymerge/4
file sorter , 122

keyreplace/4
lists , 173

keys/1
gb trees , 132

keysearch/3
lists , 173

keysort/2
file sorter , 121
lists , 173

keysort/3
file sorter , 121

keysort/4
file sorter , 121

kill_after/1
timer , 261

kill_after/2
timer , 261

l/1
c , 48

280 STDLIB

last/1
ets , 108
lists , 174

last_day_of_the_month/2
calendar , 53

lc/1
c , 48

left/2
string , 241

left/3
string , 241

len/1
string , 238

lib
error_message/2, 170
flush_receive/0, 170
nonl/1, 170
progname/0, 170
send/2, 170
sendw/2, 170

list_op/2
erl internal , 93

lists
all/2, 179
any/2, 179
append/1, 171
append/2, 171
concat/1, 172
delete/2, 172
dropwhile/2, 179
duplicate/2, 172
filter/2, 179
flatlength/1, 172
flatmap/2, 179
flatten/1, 172
flatten/2, 172
foldl/3, 179
foldr/3, 180
foreach/2, 180
keydelete/3, 173
keymember/3, 173
keymerge/3, 173
keyreplace/4, 173
keysearch/3, 173
keysort/2, 173
last/1, 174
map/2, 180
mapfoldl/3, 180
mapfoldr/3, 181

max/1, 174
member/2, 174
merge/1, 174
merge/2, 174
merge/3, 174
merge3/3, 175
min/1, 175
nth/2, 175
nthtail/2, 175
prefix/2, 175
reverse/1, 175
reverse/2, 176
seq/2, 176
seq/3, 176
sort/1, 176
sort/2, 176
splitwith/2, 181
sublist/2, 176
sublist/3, 177
subtract/2, 177
suffix/2, 177
sum/1, 177
takewhile/2, 181
ukeymerge/3, 177
ukeysort/2, 177
umerge/1, 178
umerge/2, 178
umerge/3, 178
umerge3/3, 178
usort/1, 178
usort/2, 178

local_time/0
calendar , 54

local_time_to_universal_time/2
calendar , 54

log/1
math , 183

log/2
sys , 254

log/3
sys , 254

log10/1
math , 183

log mf h
init/3, 182
init/4, 182

log_to_file/2
sys , 254

log_to_file/3

281STDLIB

sys , 254

lookup/2
dets , 63
ets , 109
gb trees , 131

lookup_element/3
ets , 109

loop_vertices/1
digraph utils , 83

ls/0
c , 48

ls/1
c , 48

m/0
c , 48

m/1
c , 49

map/2
dict , 72
lists , 180

mapfoldl/3
lists , 180

mapfoldr/3
lists , 181

match/1
dets , 63
ets , 110

match/2
dets , 63
ets , 109
regexp , 197

match/3
dets , 63
ets , 110

match_delete/2
dets , 64
ets , 110

match_object/1
dets , 64
ets , 111

match_object/2
dets , 64
ets , 110

match_object/3

dets , 65
ets , 111

matches/2
regexp , 197

math
acos/1, 183
acosh/1, 183
asin/1, 183
asinh/1, 183
atan/1, 183
atan2/2, 183
atanh/1, 183
cos/1, 183
cosh/1, 183
erf/1, 183
erfc/1, 184
exp/1, 183
log/1, 183
log10/1, 183
pi/0, 183
pow/2, 183
sin/1, 183
sinh/1, 183
sqrt/1, 183
tan/1, 183
tanh/1, 183

max/1
lists , 174

member/2
dets , 65
ets , 111
lists , 174

members/1
pg , 187

memory/0
c , 49

memory/1
c , 49

merge/1
lists , 174

merge/2
file sorter , 121
lists , 174

merge/3
dict , 73
file sorter , 121
lists , 174

merge3/3

282 STDLIB

lists , 175

min/1
lists , 175

minutes/1
timer , 262

Mod:system_code_change/4
sys , 258

Mod:system_continue/3
sys , 258

Mod:system_terminate/4
sys , 258

module/1
erl lint , 94

module/2
erl lint , 94

module/3
erl lint , 94

Module:code_change/3
gen event , 142
gen server , 158

Module:code_change/4
gen fsm , 150

Module:handle_call/2
gen event , 141

Module:handle_call/3
gen server , 156

Module:handle_cast/2
gen server , 157

Module:handle_event/2
gen event , 140

Module:handle_event/3
gen fsm , 148

Module:handle_info/2
gen event , 141
gen server , 157

Module:handle_info/3
gen fsm , 149

Module:handle_sync_event/4
gen fsm , 149

Module:init/1
gen event , 140
gen fsm , 147
gen server , 156
supervisor , 249

supervisor bridge , 251

Module:StateName/2
gen fsm , 147

Module:StateName/3
gen fsm , 148

Module:terminate/2
gen event , 141
gen server , 158
supervisor bridge , 251

Module:terminate/3
gen fsm , 150

multi_call/2
gen server , 154

multi_call/3
gen server , 154

multi_call/4
gen server , 154

multiple_relative_product/2
sofs , 230

nativename/1
filename , 125

nc/1
c , 50

nc/2
c , 50

new/0
dict , 73
digraph , 80
queue , 194
sets , 202

new/1
digraph , 80

new/2
ets , 111

new_bindings/0
erl eval , 89

new_node/2
pool , 189

next/1
gb sets , 130
gb trees , 133

next/2
dets , 65
ets , 112

283STDLIB

ni/0
c , 50

nl/0
io lib , 167

nl/1
c , 50
io , 160

no_debug/1
sys , 255

no_debug/2
sys , 255

no_edges/1
digraph , 80

no_elements/1
sofs , 230

no_vertices/1
digraph , 80

nonl/1
lib , 170

normalise/1
erl parse , 97

notify/2
gen event , 136

now_to_datetime/1
calendar , 54

now_to_local_time/1
calendar , 54

now_to_universal_time/1
calendar , 54

nregs/0
c , 50

nth/2
lists , 175

nthtail/2
lists , 175

op_type/2
erl internal , 93

open/1
win32reg , 267

open/2
epp , 86

open/3
epp , 86

open_file/1
dets , 66

open_file/2
dets , 66

out/1
queue , 194

out_degree/2
digraph , 80

out_edges/2
digraph , 80

out_neighbours/2
digraph , 80

parse/1
regexp , 199

parse_erl_exprs/1
io , 165

parse_erl_exprs/3
io , 165

parse_erl_form/1
epp , 86
io , 166

parse_erl_form/3
io , 166

parse_exprs/1
erl parse , 96

parse_file/3
epp , 86

parse_form/1
erl parse , 96

parse_term/1
erl parse , 96

parse_transform/2
erl id trans , 91

partition/1
sofs , 230

partition/2
sofs , 230

partition_family/2
sofs , 231

pathtype/1
filename , 125

pg
create/1, 187

284 STDLIB

create/2, 187
esend/2, 187
join/2, 187
members/1, 187
send/2, 187

pi/0
math , 183

pid/3
c , 50

pid2name/1
dets , 67

pool
attach/1, 188
get_node/0, 189
get_nodes/0, 189
new_node/2, 189
pspawn/3, 189
pspawn_link/3, 189
start/1, 188
start/2, 188
stop/0, 188

postorder/1
digraph utils , 84

pow/2
math , 183

prefix/2
lists , 175

preorder/1
digraph utils , 84

prev/2
ets , 113

print/1
io lib , 167

print/4
io lib , 167

print_log/1
sys , 258

printable_list/1
io lib , 169

proc lib
format/1, 192
init_ack/1, 191
init_ack/2, 191
initial_call/1, 192
spawn/3, 190
spawn/4, 190

spawn_link/3, 190
spawn_link/4, 190
spawn_opt/4, 191
start/3, 191
start/4, 191
start/5, 191
start_link/3, 191
start_link/4, 191
start_link/5, 191
translate_initial_call/1, 192

product/1
sofs , 231

product/2
sofs , 231

progname/0
lib , 170

projection/2
sofs , 232

pseudo/1
slave , 215

pseudo/2
slave , 215

pspawn/3
pool , 189

pspawn_link/3
pool , 189

put_chars/2
io , 160

pwd/0
c , 51

q/0
c , 51

queue
in/2, 194
new/0, 194
out/1, 194
to_list/1, 194

random
seed/0, 195
seed/3, 195
seed0/0, 195
uniform/0, 195
uniform/1, 195
uniform_s/1, 196
uniform_s/2, 196

285STDLIB

range/1
sofs , 232

rchr/2
string , 238

reachable/2
digraph utils , 84

reachable_neighbours/2
digraph utils , 84

reaching/2
digraph utils , 84

reaching_neighbours/2
digraph utils , 84

read/2
io , 160

regexp
first_match/2, 197
format_error/1, 199
gsub/3, 198
match/2, 197
matches/2, 197
parse/1, 199
sh_to_awk/1, 199
split/2, 198
sub/3, 198

regs/0
c , 51

relation/2
sofs , 232

relation_to_family/1
sofs , 232

relative_product/2
sofs , 233

relative_product1/2
sofs , 233

relay/1
slave , 215

remove/2
sys , 256

remove/3
sys , 256

rename/2
ets , 113

reply/2
gen fsm , 146
gen server , 156

reserved_word/1
erl scan , 103

restart_child/2
supervisor , 247

restriction/2
sofs , 233

restriction/3
sofs , 234

results/1
shell , 211

resume/1
sys , 255

resume/2
sys , 255

reverse/1
lists , 175

reverse/2
lists , 176

right/2
string , 241

right/3
string , 241

rootname/1
filename , 126

rootname/2
filename , 126

rstr/2
string , 238

safe_fixtable/2
dets , 67
ets , 113

scan_erl_exprs/1
io , 165

scan_erl_exprs/3
io , 165

scan_erl_form/1
io , 165

scan_erl_form/3
io , 165

seconds/1
timer , 262

seconds_to_daystime/1
calendar , 54

286 STDLIB

seconds_to_time/1
calendar , 55

seed/0
random , 195

seed/3
random , 195

seed0/0
random , 195

select/1
dets , 68
ets , 115

select/2
dets , 68
ets , 114

select/3
dets , 68
ets , 115

select_delete/2
dets , 69

send/2
lib , 170
pg , 187

send_after/2
timer , 260

send_after/3
timer , 260

send_all_state_event/2
gen fsm , 145

send_event/2
gen fsm , 145

send_interval/2
timer , 261

send_interval/3
timer , 261

send_op/2
erl internal , 93

sendw/2
lib , 170

seq/2
lists , 176

seq/3
lists , 176

set/2
sofs , 234

set_value/3
win32reg , 267

sets
add_element/2, 203
del_element/2, 203
filter/2, 204
fold/3, 204
from_list/1, 202
intersection/1, 203
intersection/2, 203
is_element/2, 202
is_set/1, 202
is_subset/2, 204
new/0, 202
size/1, 202
subtract/2, 203
to_list/1, 202
union/1, 203
union/2, 203

sh_to_awk/1
regexp , 199

shell
history/1, 211
results/1, 211

sin/1
math , 183

singleton/1
gb sets , 128

sinh/1
math , 183

size/1
gb sets , 128
gb trees , 131
sets , 202

slave
pseudo/1, 215
pseudo/2, 215
relay/1, 215
start/1, 213
start/2, 213
start/3, 214
start_link/1, 213
start_link/2, 214
start_link/3, 214
stop/1, 215

sleep/1
timer , 261

slot/2

287STDLIB

dets , 69
ets , 116

sofs
a_function/2, 219
canonical_relation/1, 220
composite/2, 220
constant_function/2, 220
converse/1, 220
difference/2, 221
digraph_to_family/2, 221
domain/1, 221
drestriction/2, 221
drestriction/3, 222
empty_set/0, 222
family/2, 222
family_difference/2, 222
family_domain/1, 222
family_field/1, 223
family_intersection/1, 223
family_intersection/2, 223
family_projection/2, 223
family_range/1, 224
family_specification/2, 224
family_to_digraph/2, 224
family_to_relation/1, 225
family_union/1, 225
family_union/2, 225
field/1, 226
from_external/2, 226
from_sets/1, 226
from_term/2, 226
image/2, 227
intersection/1, 227
intersection/2, 227
intersection_of_family/1, 228
inverse/1, 228
inverse_image/2, 228
is_a_function/1, 228
is_disjoint/2, 228
is_empty_set/1, 229
is_equal/2, 229
is_set/1, 229
is_sofs_set/1, 229
is_subset/2, 229
is_type/1, 229
join/4, 229
multiple_relative_product/2, 230
no_elements/1, 230
partition/1, 230
partition/2, 230
partition_family/2, 231
product/1, 231

product/2, 231
projection/2, 232
range/1, 232
relation/2, 232
relation_to_family/1, 232
relative_product/2, 233
relative_product1/2, 233
restriction/2, 233
restriction/3, 234
set/2, 234
specification/2, 234
strict_relation/1, 234
substitution/2, 235
symdiff/2, 235
symmetric_partition/2, 236
to_external/1, 236
to_sets/1, 236
type/1, 236
union/1, 236
union/2, 236
union_of_family/1, 237
weak_relation/1, 237

sort/1
file sorter , 121
lists , 176

sort/2
file sorter , 121
lists , 176

sort/3
file sorter , 121

span/2
string , 239

spawn/3
proc lib , 190

spawn/4
proc lib , 190

spawn_link/3
proc lib , 190

spawn_link/4
proc lib , 190

spawn_opt/4
proc lib , 191

specification/2
sofs , 234

split/1
filename , 126

split/2

288 STDLIB

regexp , 198

splitwith/2
lists , 181

sqrt/1
math , 183

start/0
gen event , 135
timer , 260

start/1
gen event , 135
pool , 188
slave , 213

start/2
pool , 188
slave , 213

start/3
gen fsm , 144
gen server , 152
proc lib , 191
slave , 214

start/4
gen fsm , 144
gen server , 152
proc lib , 191

start/5
proc lib , 191

start_child/2
supervisor , 245

start_link/0
gen event , 135

start_link/1
gen event , 135
slave , 213

start_link/2
slave , 214
supervisor , 245
supervisor bridge , 250

start_link/3
gen fsm , 144
gen server , 152
proc lib , 191
slave , 214
supervisor , 245
supervisor bridge , 250

start_link/4
gen fsm , 144

gen server , 152
proc lib , 191

start_link/5
proc lib , 191

statistics/2
sys , 254

statistics/3
sys , 254

stop/0
pool , 188

stop/1
gen event , 139
slave , 215

store/3
dict , 73

str/2
string , 238

strict_relation/1
sofs , 234

string
centre/2, 241
centre/3, 241
chars/2, 239
chars/3, 239
chr/2, 238
concat/2, 238
copies/2, 240
cspan/2, 239
equal/2, 238
left/2, 241
left/3, 241
len/1, 238
rchr/2, 238
right/2, 241
right/3, 241
rstr/2, 238
span/2, 239
str/2, 238
strip/1, 240
strip/2, 240
strip/3, 240
sub_string/2, 241
sub_string/3, 242
sub_word/2, 240
sub_word/3, 240
substr/2, 239
substr/3, 239
tokens/2, 239
words/1, 240

289STDLIB

words/2, 240

string/1
erl scan , 102

string/2
erl scan , 102

strip/1
beam lib , 45
string , 240

strip/2
string , 240

strip/3
string , 240

strip_files/1
beam lib , 45

strip_release/1
beam lib , 46

strong_components/1
digraph utils , 85

sub/3
regexp , 198

sub_keys/1
win32reg , 268

sub_string/2
string , 241

sub_string/3
string , 242

sub_word/2
string , 240

sub_word/3
string , 240

subgraph/3
digraph utils , 85

sublist/2
lists , 176

sublist/3
lists , 177

substitution/2
sofs , 235

substr/2
string , 239

substr/3
string , 239

subtract/2

lists , 177
sets , 203

suffix/2
lists , 177

sum/1
lists , 177

supervisor
check_childspecs/1, 248
delete_child/2, 247
Module:init/1, 249
restart_child/2, 247
start_child/2, 245
start_link/2, 245
start_link/3, 245
terminate_child/2, 246
which_children/1, 248

supervisor bridge
Module:init/1, 251
Module:terminate/2, 251
start_link/2, 250
start_link/3, 250

suspend/1
sys , 255

suspend/2
sys , 255

swap_handler/5
gen event , 138

swap_sup_handler/5
gen event , 139

symdiff/2
sofs , 235

symmetric_partition/2
sofs , 236

sync/1
dets , 69

sync_notify/2
gen event , 136

sync_send_all_state_event/2
gen fsm , 146

sync_send_all_state_event/3
gen fsm , 146

sync_send_event/2
gen fsm , 145

sync_send_event/3
gen fsm , 145

290 STDLIB

sys
change_code/4, 255
change_code/5, 255
debug_options/1, 257
get_debug/3, 257
get_status/1, 255
get_status/2, 255
handle_debug/1, 257
handle_system_msg/6, 257
install/3, 256
install/4, 256
log/2, 254
log/3, 254
log_to_file/2, 254
log_to_file/3, 254
Mod:system_code_change/4, 258
Mod:system_continue/3, 258
Mod:system_terminate/4, 258
no_debug/1, 255
no_debug/2, 255
print_log/1, 258
remove/2, 256
remove/3, 256
resume/1, 255
resume/2, 255
statistics/2, 254
statistics/3, 254
suspend/1, 255
suspend/2, 255
trace/2, 255
trace/3, 255

tab2file/2
ets , 116

tab2list/1
ets , 116

take_smallest/1
gb sets , 130
gb trees , 133

takewhile/2
lists , 181

tan/1
math , 183

tanh/1
math , 183

tc/3
timer , 262

terminate_child/2
supervisor , 246

test_ms/2
ets , 116

time_difference/2
calendar , 55

time_to_secnds/1
calendar , 55

timer
apply_after/4, 260
apply_interval/4, 261
cancel/1, 261
exit_after/2, 261
exit_after/3, 261
hms/3, 262
hours/1, 262
kill_after/1, 261
kill_after/2, 261
minutes/1, 262
seconds/1, 262
send_after/2, 260
send_after/3, 260
send_interval/2, 261
send_interval/3, 261
sleep/1, 261
start/0, 260
tc/3, 262

to_dets/2
ets , 117

to_ets/2
dets , 69

to_external/1
sofs , 236

to_list/1
dict , 73
gb sets , 130
gb trees , 132
queue , 194
sets , 202

to_sets/1
sofs , 236

tokens/1
erl parse , 97

tokens/2
erl parse , 97
string , 239

tokens/3
erl scan , 102

topsort/1

291STDLIB

digraph utils , 85

trace/2
sys , 255

trace/3
sys , 255

translate_initial_call/1
proc lib , 192

traverse/2
dets , 69

type/1
sofs , 236

type_test/2
erl internal , 92

ukeymerge/3
lists , 177

ukeysort/2
lists , 177

umerge/1
lists , 178

umerge/2
lists , 178

umerge/3
lists , 178

umerge3/3
lists , 178

uniform/0
random , 195

uniform/1
random , 195

uniform_s/1
random , 196

uniform_s/2
random , 196

union/1
gb sets , 129
sets , 203
sofs , 236

union/2
gb sets , 129
sets , 203
sofs , 236

union_of_family/1
sofs , 237

universal_time/0
calendar , 55

universal_time_to_local_time/2
calendar , 55

unix
cmd/1, 264

update/3
dict , 73
gb trees , 132

update/4
dict , 74

update_counter/3
dets , 70
dict , 74
ets , 117

update_counter/4
ets , 117

usort/1
lists , 178

usort/2
lists , 178

valid_date/1
calendar , 56

valid_date/3
calendar , 56

value/2
win32reg , 268

values/1
gb trees , 132
win32reg , 268

version/1
beam lib , 44

vertex/2
digraph , 81

vertices/1
digraph , 81

weak_relation/1
sofs , 237

which_children/1
supervisor , 248

which_handlers/1
gen event , 139

292 STDLIB

win32reg
change_key/2, 266
change_key_create/2, 266
close/1, 266
current_key/1, 266
delete_key/1, 266
delete_value/2, 267
expand/1, 267
format_error/1, 267
open/1, 267
set_value/3, 267
sub_keys/1, 268
value/2, 268
values/1, 268

words/1
string , 240

words/2
string , 240

write/1
io lib , 167

write/2
io , 160
io lib , 167

write_atom/1
io lib , 168

write_char/1
io lib , 168

write_string/1
io lib , 168

xm/1
c , 51

zi/0
c , 51

293STDLIB

294 STDLIB

